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Abstract: Having a global definition of a theory is required for non-local structures such

as wormholes which prevent the system’s Hilbert space from factorizing over the bulk space-

time. While these wormhole structures usually occur in Lorentzian spacetime manifolds,

they can emerge in quantized symplectic spaces as topological wormholes which connect

different particle or entanglement orbits. Topological wormholes affect the dynamics of the

system non-perturbatively and so are crucial in describing theories globally. We review the

framework of topological wormholes in quantum gravity and their relation to holographic

entanglement. Thereafter, we initiate a study on the entanglement structure of qubits in

potential-well lattices with topological wormholes. In these lattices we demonstrate the

relationship between quantum tunneling events and wormholes.
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1 Introduction

A recent topic of interest in theoretical physics has been the proposition of emergence; is the

macroscopic structure of our universe a consequence of its fine-structure at smaller length

scales? In other words, are large scale system behaviours dependent on its constituent parts,

or is it independent? These questions have garnered significant attention when describing

the nature of our spacetime, and whether or not it possesses some deeper structure as a

result of emergence.

The study of spacetime structure is a topic of great interest in the realm of quantum

gravity. It can be approached from two distinct perspectives: quantizing classical gravi-

tational theories and investigating theories where quantum effects and spacetime emerge

as fundamental properties. The former involves methods like loop quantum gravity, which

seeks to capture the discrete nature of spacetime at microscopic scales. On the other hand,

the latter explores the intriguing possibility of the universe’s geometry emerging through

the interplay of fundamental processes, such as phase transitions driven by the renormal-

ization group flow of the theory’s coupling constants [1]. Further studies of spacetime
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emergence have come from the study of entanglement in black holes. Black holes pose in-

teresting contradictions, such as the black hole information paradox whereby information

input into black hole is lost since what is radiated by the black hole is featureless thermal

radiation [2]. This means at some point the system loses information, which violates the

conservation of information in an isolated system (our universe). To reconcile this incon-

sistency, it was proposed that the radiation emitted is entangled with the interior of the

black hole [3], meaning that the information is still present in the system globally and there

is no violation in the amount of information. The system is described by its entanglement

entropy which describes the degree of which properties of objects are connected [4]. This

can also be viewed as how much information is lost when the system is viewed partially.

This picture later came with issues as when considering these black holes in the presence

of external matter. As matter falls into the black hole — being that it eventually will be

evaporated out from the black hole as radiation — the in-falling matter must be entangled

with the radiation. This is problematic as the radiation is already maximally entangled

with the inside of the black hole and this violates the monogamy of entanglement; maxi-

mal quantum entanglement cannot be shared amongst an arbitrary amount of parties. The

reconciliation to this was that monogamy would not be violated if the radiation was itself

also the interior of the black hole [5]. In this sense the radiation is not truly independent

from its source, but is instead tethered to an island within the black hole. This presents

an interesting example of emergence: the thermal radiation corresponds directly to a piece

of space within the black hole. The features of the island emerges by the properties of its

entangled radiation elsewhere. What is more is that the implication that the radiation is

also the inside of the black hole seems to be contradictory being that they are physically

separated in spacetime. However, the spatial separation implies a connection between the

two in the form of a non-local extremal geometry: a wormhole. We will see further in

this introduction that wormholes will be a center focus in probing the global properties of

systems in quantum gravity.

The characterization of spacetime as an emergent property can be extended with the

use of holography, specifically the AdS/CFT correspondence. This is a conjecture that

relates the gravitational partition function in the bulk of the anti de Sitter (AdS) spacetime,

to the conformal field theory (CFT) partition function on the conformal boundary of AdS.

From this context we can interpret gravitational objects as fields on the boundary. This

motivates the idea that the structure of spacetime bulk is an emergent property of a lower

dimensional quantum system on the boundary [6], which is the principle of holography.

A popular example is that pairs entangled particles on the boundary correspond to a

wormholes in the bulk [5]. The idea of spacetime emergence from quantum mechanics was

extended further in [7] in which pairs of entangled particles corresponds regions of the AdS

space. A given amount of entanglement entropy corresponds to certain configuration of the

bulk spacetime, which dictates the energy distribution within that space [8]. Furthermore,

the entanglement entropy of the quantum particles could also in principle describe the

entanglement entropy of matter in the bulk [9], or even endow spacetime with features

that match those of general relativity [10].

Emergence of spatial structure is not unique to spacetime however, and also includes
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configurations of qubits and symplectic manifolds. A configuration of five highly entangled

qubits can be used to store the information of a single virtual qubit. This construction is

useful in the construction of quantum computers, as if a subset of the physical qubits are

damaged, their entanglement makes it so that the information of the virtual qubit is not

lost. In this sense we can think of this configuration as a model of emergent space [11].

The virtual qubit emerges as an atom of space from the entanglement structure of the

qubits. Additionally, the entanglement structure of qubits turns out to be interesting as

they describe different topological wormholes, which are identified by different geomet-

ric phases [12]. While our preceding discussions were of spacetime wormholes, topological

wormholes are extremal geometries arising in the quantized phase spaces of quantum sys-

tems [13], which connect different independent system orbits. It was shown that topological

wormholes occur in a large class of quantum mechanical systems, and not just holographic

ones. Much like how there is a correspondence between entangled states and spacetime

wormholes, it was also demonstrated that there is a connection between the topological

wormhole partition function and the entanglement entropy of quantum states prepared in

Euclidean spacetimes [14]. Wormholes are thus integral to describing the global structure

of a system, whether it is a spacetime or symplectic manifold. We use the topological

wormhole framework to describe entangled systems of qubits in potential-well lattices, and

within it relate wormholes to quantum tunneling.

This paper is structured as follows. In section 2 we look at wormholes occurring in

quantum gravity. In section 3 we look at bipartite qubit systems subject to potential-

wells which admit topological wormholes and relate them to qubit quantum tunnelling

events and in section 4 we summarize. Finally, the appendix A describes the framework

for the topological structure of wormholes and their correspondences to entanglement with

topological quantum field theory.

2 Wormholes in Quantum Gravity

Now we turn our attention to wormhole cobordisms occurring in quantum gravity. First

we present a concise overview of spacetime wormholes and their dual entangled states in

the context of AdS/CFT. Then we look at when the systems space or bundle admits non-

trivial holonomy and how it gives rise to hidden information. Finally, we look topological

wormholes which manifest in quantized symplectic spaces.

2.1 Spacetime Wormholes & Holography

Here we look at the spacetime framework of eternal black holes in the context of holography.

The eternal black hole spacetime, also known as the maximally extended Schwarzschild

black hole, has its boundary and singularity identified in multiple universes and exists for

all time (even before the big bang in inflationary models). This is due to the spacetime

not admitting a global time-like killing vector being that the different definitions of time

flow on the boundaries of the black hole generate a topological defect at the event horizon.

A constant time slice of the spacetime geometry leads to a hypersurface that connects

the spaces of the two universes, a geometry known as a wormhole or an Einstein-Rosen
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bridge. The interpretation is that the interior of the internal blackhole is the bulk of the

wormhole; to traverse the wormhole you must enter the blackhole. The spaces which the

wormhole connects are cobordant if have the same dimension and their disjoint union is

the boundary of a compact manifold which is one dimension higher (the 3+1D spacetime

slices). In general these wormholes are non-traversable as the wormhole throat shrinks in

size as an observer enters the eternal black hole’s horizon in their universe and approaches

the singularity [5]. What’s more is that the wormhole geometry grows with the expansion

of the universe, so even if the opening radius is fixed, an observer would be stuck inside the

wormhole once the throat ends become causally disconnected. However, it was found that

if an interaction is turned on that couples the two boundaries†, the quantum-matter stress

tensor ends up having negative average energy and this prevents the throat opening from

closing [15]. After the gravitational field of the wormhole interacts with the background

spacetime (gravitational backreaction), the wormhole is rendered traversable. Furthermore,

the study also revealed that infinite null geodesics which enter the wormhole must be

chronal (sets of points are chronal if any two points can be connected by a timelike curve)

and so wormholes cannot be used to violate causality or for faster than light travel.

These wormholes are particularly interesting when the spacetimes they connect are

anti-de Sitter space (AdS). This is because of the AdS/CFT correspondence, a conjecture

which proposes a duality between gravitational theories on the bulk with conformal field

theories on the conformal boundary in the form of related partition functions [16]. To

illustrate this, consider a massless scalar field ϕ in the bulk of an (n+1)-dimensional anti-

de Sitter space, AdSn+1. The restriction ϕ to the conformal boundary is denoted as ϕ0 and

is coupled to a conformal field O (a field that is invariant under the conformal symmetry

group) under the coupling
∫
Sn ϕ0O, where Sn is the conformal boundary of AdSn+1. We

can relate the supergravity partition function ZS on the bulk associated with ϕ, with the

conformal field partition function on the boundary as:

ZS [ϕ0] =

〈
exp

∫
Sn

ϕ0O
〉

CFT

= ZCFT[ϕ0]. (2.1)

This duality allows us to identify gravitational objects in the bulk to conformal fields on

the boundary of AdS. Perhaps the most popular correspondence comes from the ER=EPR

conjecture which states that wormholes in the spacetime bulk are dual to quantum entan-

gled states living in the CFT on the boundaries. For an external black hole that connects

two AdS spaces (where they are denoted as the left and right AdS spaces), we have two

copies of CFTs that live on the boundaries of the two connected spacetimes. Such a worm-

hole connecting the two spacetimes corresponds to an entangled state that live in both

CFTs. The entangled state between two identical CFTs is known as the thermofield double

state (TFD) and is written as:

|Ω⟩ = 1√
Z(β)

∑
n

e−βEn/2 |n⟩⊗|n⟩∗ , (2.2)

†The interaction comes from a deformation of the theory’s action with an extra term in the form of a

product of two single trace operators (a trace of a matrix product of field operators).
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where Z(β) = tr(eβH) is the thermal partition function of the state for a fixed inverse-

temperature β and Hamiltonian H, En are the energy eigenvalues of the Hamiltonian, and

|n⟩∗ is the CPT conjugate of |n⟩ to account for time flow running in different directions on

the conformal boundaries. The energy eigenstates live in the Hilbert vector space HL⊗HR

over the boundary, where (HL,HR) are the Hilbert spaces of the left and right CFTs, re-

spectively. The state is prepared via path integrals in the Euclidean AdS spacetime, AdSE ,

which is represented as boundary conditions on hypersurfaces of AdSE [17]. The state is

then evolved in time in the usual Lorentzian AdS space. This represents an entangled state

as it cannot be factored out into a single product state. The holographic duality gives us

a correspondence between wormholes and entanglement.

Finally, spacetime wormholes give extra contributions to the Witten diagrams (roughly

speaking they are Feynman diagrams projected onto the Poincaré disks of AdS space) when

computing correlations functions in the CFT [18]. This develops in the form of extra terms

known as defects, which connect different parts of the conformal diagram via wormholes.

This allows for the boundary operators to evolve in different ways, such through the throats

of the wormhole. In the following section we look at what happens when the systems space

or bundle admits a non-trivial holonomy.

2.2 Hidden Information in Holonomy

There is more to the story when the manifold admits non-trivial holonomy, which in essence

captures the non-commutative nature of the space we are working with. If the space is

in fact a fibre bundle then the holonomy measures how much the endpoints of a closed

path in the base space differ when uplifting the path to the total space of fibres [19]. In

the case of the eternal black hole, the non-trivial holonomy arises from the topological

defect at the event horizon which causes a discontinuity in uplifted time-like Killing paths.

This leads to wormhole contributions in the gravitational path integral due to a non-exact

symplectic form [20], which will be discussed in the following section. What’s more is

that in physics then holonomy is often referred to as a geometric phase and is attributed

to hidden information within a quantum system. This is because manifolds admitting a

non-trivial holonomy require multiple coordinate patches and locally a physical observer

only perceives one patch of the base manifold. This means that they cannot know that the

system admits a geometric phase defined via a path that goes through multiple patches.

This phase tells us whether or not the structure is a product space or a fibre bundle and

so this information is hidden from a local observer [19]. In the following we look at the

consequence of geometric phases and how they distinguish between entangled states with

the same entanglement entropy.

Consider the conformal spacetime geometry of an eternal blackhole, consisting of two

AdS spacetimes (and their respective conformal boundaries), and the interiors of the black

and white holes. If we foliate the spacetime by constant-time hypersurfaces (as in figure 5),

the leaf associated with t = 0 corresponds to the usual wormhole geometry connecting two

spatial regions of the AdS spaces. A geodesic on this geometry is holographically dual

to thermofield double state |Ω⟩ living in the Hilbert space over the conformal boundaries

of the leaf. Although the Hilbert space on the boundary factorizes into a tensor product
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of the Hilbert spaces at each assymptotic boundary, we cannot factorize the bulk Hilbert

space over each leaf due to the presence of wormhole structures [19], which is the same

reason why we cannot factorize of the wormhole partition function globally. Leaves with

t > 0 instead correspond to time-shifted wormhole geometries, and the geodesics within

those geometries are dual to TFD-like states that have additional phases [12]:

|Ωα⟩ = 1√
Z(β)

∑
n

eiαne−βEn/2 |n⟩⊗|n⟩∗ , (2.3)

where αn are phases that distinguish the different entangled states and hence distin-

guish different wormhole leaves. These states are interpreted as the microstates of the

eternal black hole [21]. The time-shifted wormholes have the same geometry but have

different identifications of boundary times. One musts ask where exactly do these phases

come from? The spacetime manifold is not necessarily connected and so must be described

by different coordinate charts. Consider the left and right copies of AdS to have the re-

spective coordinate charts (εL, L, tL) and (εR, R, tR). Here εL is the asymptotically flat

region around the left wormhole throat, L is the boundary of the left AdS space, and tL is

the time coordinate flowing along the left boundary. These charts overlap in the interface

of the asymptotic regions around the throats, and at the wormhole horizon (interface of

the interior of the wormhole where the left and right throats connect). In other to keep the

spacetime manifold well defined, we must make it so that the transition functions between

the charts are smooth, resulting in the relations: at the interface of the asymptotic regions

tL = tR, and at the interface at the horizon tL = 2δ − tR, where δ is a fundamental degree

of freedom of the system [22] (which is actually an element of the system’s moduli space;

more on this in the qubit section). With this parameter the phases can be computed as

αn = −2Enδ.

What happens when we transport a particle around a closed geodesic on one of these

wormhole leaves? To transport it we require groups that generate symmetries and so evolve

the states. Consider a Lie symmetry group G which also has the structure of a manifold†.

We will need a connection if we wish to describe derivatives covariantly and preserve group

symmetries. This can be represented as the Maurer-Cartan form Γ = g−1dg which is the

natural connection on a group manifold, where g ∈ G and dg ∈ T ∗
gG. This form carries the

basic infinitesimal information about the symmetries and transformations associated with

G. Moreover, the tangent space at the identity of the group, T1lG, is the vector space over

G known as the Lie Algebra g. This consists of generators which encode the dynamics of

quantum states in spacetime via the exponentiation of the Lie algebra elements.

With this we move onto parameter spaces, which is the space of external parameters

that define the system’s Hamiltonian. For example, these parameters could be the compo-

nents of an external gauge field as in the Aharonov-Bohm effect. When a system evolves

adiabatically, the parameters vary slowly such that the system stays in an eigenstate of

the Hamiltonian. When the system returns to its initial state after completing a cyclic

evolution in parameter space, the quantum state picks up a non-trivial phase known as a

†This can be extended in generality by having a fibre bundle of group manifolds in which the connection

endows a covariant derivative on the fibers of the group bundle.
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geometric phase (more commonly known as the Berry phase) which is an observable prop-

erty of the system. This evolution corresponds to parallel transporting a quantum state

along a closed loop in parameter space. It is noted that in the case of the Aharonov-Bohm

effect the charged particle moves in a loop in physical space which corresponds to a closed

parallel transport loop in the parameter space which ultimately gives the particle state the

phase. Explicitly, the particle moving around the solenoid evolves the system in such a way

that a closed loop path is followed in parameter space, and it is coincidental that physi-

cally the particle also moves in a loop. This is analogous to the case of wormholes where

transporting a pair of entangled particles through the wormhole throats in a closed loop

happens to change the system’s Hamiltonian to go around a loop in parameter space and

give us a Berry phase. Being that the geodesic that generates the Berry phase is dual to

an entangled state, we must evolve both particles via some unitary group elements Ua ∈ G

to preserve probability amplitude normalizations. Moreover, what if one of the entangled

particle say interacts with an external field? This gives us distribution of entangled states

by deforming the unitary operators of one of the Hilbert subspaces. We define the unitary

group representation U = UL⊗UR, where UL/R acts on the left/right CFT Hilbert space.

We can consider a continuous parameter λ ∈ [0, 1] to deform UR such that UR = 1l for λ = 0

and UR = UL for λ = 1 [12]. This gives us a continuous spectrum of entangled states for

different values of λ which have the same entanglement entropy (the unitary operators can

be moved around in the trace functional and cancel in the definition of the entanglement

entropy).

Finally, to describe the Berry phase we must make use of the Berry connection, which is

defined in terms of the previously mentioned Maurer-Cartan form Γ = U−1dU for a group

element U = U(λ) that distinguishes different entangled states for different λ. Given the

form Γ, we can define the Berry connection for a given state which we want to consider

(the phase-shifted TFD state |Ωα⟩) as:

A = i ⟨Ωα|Γ |Ωα⟩ . (2.4)

Here the Berry phase is the holonomy of the Berry connection. To compute the phase

we must define the Berry curvature form F which is given by F = i ⟨Ωα| dA |Ωα⟩, where
dA is the associated symplectic form of the parameter space which is not globally exact.

The Berry phase Φ is then given integrating the curvature over a closed loop in parameter

space γ:

Φ =

∮
γ
F (λ). (2.5)

As long as λ ̸= 1 so that UL ̸= UR, the system admits a non-zero Berry phase. Using

the inverse function theorem for a well-behaved function Φ(λ), we can invert this relation

to get λ(Φ). Thus, the Berry phases distinguish a class of entangled states with the same

entanglement entropy/structure. This corresponds to transporting particles along closed

loop geodesics on the different time-shifted wormhole leaf geometries. Furthermore, the

class of states with the same entanglement entropy but different Berry phases is a manifes-

tation of the non-factorization of the leaf Hilbert spaces [12], and that the symplectic form
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cannot be globally exact. Finally, there are different types of Berry phases in holographic

CFTs which are classified by the type of bulk diffeomorphisms that are involved [23].

2.3 Topological Wormholes in Symplectic Spaces

We now consider topological wormholes arising in theories of quantum mechanics. We look

at how we can arrive at these geometries by quantizing a classical symplectic space via

geometric quantization, and looking at orbits occurring in it via symplectic reduction. We

first look at quantizing a phase space, and then look at it in the context of wormholes.

2.3.1 Geometric Quantization

Let’s start with classical mechanics. Consider a 2n-dimensional phase space Σ with co-

ordinates σa = (q1, . . . , qn, p1, . . . , pn), where qa are the generalized position coordinates,

and pa are the generalized momentum coordinates. Much like how spacetime is endowed

with a symmetric bilinear two-form gµν – the metric tensor – phase spaces are symplectic

manifolds which are endowed with a non-vanishing antisymmetric two-form:

Ω =
1

2
Ωabdσ

a ∧ dσb. (2.6)

Here Ωab are the components of the two form, represented in the cotangent bundle

basis dσa. Being that Ω vanishes nowhere on Σ — meaning it is non-degenerate — Ωab

has an inverse. The symplectic form encodes the dynamics of the classical system. To see

this, consider two functions f, g ∈ C∞(Σ), the Poisson bracket of them takes the form [24]:

{f, g} = Ωab
∂f

∂σa
∂g

∂σb
. (2.7)

Moreover, we can use this definition of the Poisson bracket to evolve functions in time

in the following form:

ḟ(t, σa) =

(
∂

∂t
− {H, ·}

)
f, (2.8)

where H is the Hamiltonian of the system which describes time flow of the system over

the symplectic space, and {H, ·}f = {H, f}. The Poisson bracket is closely related to the

Lie derivative via {f, g} = LXgf (where Xg is the vector field associated with the function

g) and so it gives us information about symmetries and conserved quantities of the system.

Thereafter, we can consider a coordinate system of the phase space which diagonalizes

the Hamiltonian, which are called action angle coordinates. This allows us to study the

normal modes of a system without having to solve the equations of motion. This is a

canonical transformation from (qa, pa) to (Jm, θm) which preserve the structure of the

equations of motion. Here Jm are the action coordinates given by Jm =
∮
dqmpm which

are conserved quantities relating to the energy of the system and the amplitude of the

oscillation modes. θm are angle coordinates which are the canonical conjugates to Jm,

which are related to the phases of the oscillation modes. The intuition for these coordinates

can be found when considering orbits. The set of all trajectories of a subsystem in phase

space given by the action of a symmetry group are known as orbits. These orbits represent
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the evolution of the system and are usually parametrized by time. Along these orbits Jm

is conserved, so the interpretation is that Jm label different orbits in phase space that the

system can evolve through and θm can parametrize these orbits.

Now, instead of diagonalizing the Hamiltonian via a canonical transformation, we can

instead consider an unperturbed diagonal Hamiltonian which is a function of the action

angle coordinates H0(J), in the presence of a perturbing Hamiltonian which is a function

of the phase space coordinates H ′(σ) such that H ′ ≪ 1. This gives us a Hamiltonian of

the form H = H0(J) +H ′(σ) [14] (where H0 not a function of θ being that its canonical

conjugate is conserved) and this allows us to use the framework of perturbation theory.

This Hamiltonian results in the symplectic form picking up an extra term:

Ω = Ωabdσ
a ∧ dσb + δmndJ

m ∧ dθn, (2.9)

where δmn is the usual Kronecker delta matrix. Moving forward, we want to quantize

the phase space so that we can consider a quantum theory. This will be done via geometric

quantization, but alternatively deformation quantization works as well. We will present a

brief overview of the procedure using natural units, but a rigorous treatment of it can be

found in [25]. The procedure is as follows:

We want to lift classical observables from our symplectic manifold Σ to quantum

operators in some Hilbert space H in a way that preserves the algebraic structure of Σ.

The first step is known as pre-quantization in which we define a pre-quantum Hilbert

space H̃. We begin by defining a line bundle L (a vector bundle where the fibres are one-

dimensional vector spaces) L over Σ which is equipped with a U(1)-connection such that

the curvature form is iΩ. Explicitly, we say the symplectic form is the curvature form of

a U(1)-principle bundle written as the fibration L → Σ. This bundle is called the pre-

quantum line bundle [25]. This construction requires that Ω obeys the Bohr-Sommerfeld

condition which states that Ω/2π forms an integral cohomology class. Essentially this

means that integrals of Ω/2π over cycles of Σ must be integers. We define the pre-quantum

Hilbert space H̃ as the collection of square-integrable sections of L. We can now begin our

construction of pre-quantum operators.

For a classical observable on the phase space given by a smooth function f ∈ C∞(Σ),

the associated pre-quantum operator is the linear map mapping:

Q(f) : Γ(L) → Γ(L). (2.10)

Here Γ(L) is the space of smooth sections of the line bundle, whose elements are the

pre-quantum states. If we select ψ ∈ Γ(L), the map Q acts on it in the following way [26]:

ψ 7→ −i∇vfψ + f · ψ, (2.11)

where ∇vf is the covariant derivative of sections along vf which is specified by the

bundle connection, and vf is a Hamiltonian vector field† corresponding to the function f .

The pre-quantum operators satisfy the following commutator algebra:

†A vector field is Hamiltonian if the flow is generates on Σ describes the time evolution of states.
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[Q(f), Q(g)] = iQ({f, g}), (2.12)

where [, ] are the usual commutator brackets associated with the Lie derivative.

We are ready to move onto the next step of geometric quantization (ignoring the

metaplectic correction for non-trivial topologies): polarization. In essence, the pre-quantum

Hilbert space H̃ is too big in the sense that phase space is much larger than the physical

configuration space. So what we do is carefully select a subspace of the pre-quantum Hilbert

space H̃ such that we eliminate redundancies and ensure that the resulting quantum theory

captures the relevant degrees of freedom. First, consider the tangent bundle TΣ associated

with the symplectic phase space Σ. To capture the complex degrees of freedom present

in quantum mechanics we complexify the tangent bundle by endowing it with a complex

structure given by the two-tensor J i
j such that J2 = −1l. A polarization is a choice of a

Lagrangian subbundle of the complexified tangent bundle TΣC, or rather at each point in

the complexified tangent space we select a Lagrangian subspace. A subspace is Lagrangian

if it is isoptropic and is half the dimension of the space it is a subspace of. In this sense

these subspaces of the tangent bundle on Σ form an integral distribution of subspaces

which foliate Σ. With this we can define the quantum Hilbert space H to be the space

of all square-integrable sections of L that are covariantly constant in the direction of the

polarization. This might be mysterious at first glance, but the sections are vector fields

which don’t change orientation when parallel transported about the polarization subspace.

This condition ensures that resulting quantum states are compatible with the classical and

quantum symmetries of the system. Using the quantum Hilbert space, our pre-quantum

operators become quantum operators in the theory Q̂ which act on elements of the Hilbert

space H. Now that we have a notion of quantizing a classical phase space to produce a

quantum theory, we move onto looking at this in the context of topological wormholes.

2.3.2 Symplectic Reduction

Now we can finally look at topological wormholes occurring in quantum theories. For a

generic theory of classical mechanics, we can write the partition function of the theory at

a fixed inverse temperature β as the following Euclidean path integral representation:

Z(β) =

∫
[dσ] exp

{∫
D
Ω−

∫
∂D

dt H

}
, (2.13)

where [dσ] is the usual product path integral measure associated with phase space

coordinates σa, Ω is the symplectic two-form, H is the Hamiltonian, and D ⊂ Σ is a two-

dimensional submanifold of the symplectic phase space Σ. The argument of the exponential

is the action of the system, and the perturbative expansion of the gravitational path integral

includes contributions arising from wormhole structures. Now, being that Ω is closed such

that dΩ = 0, its integral over D is a topological invariant and so the geometric properties

of D don’t matter, only its topology [14]. With this we can select the most trivial topology

for D, taking the form of a 2-disk which is embedded in Σ. The boundary of this disk is an

orbit, which is the space of all trajectories through which a state can evolve in phase space
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that represents the time evolution of a system. Because of this is it natural to parametrize

the boundary of D with time t and it represents independent orbit of a particle. One could

imagine connecting two disks between two independent particle orbits which otherwise

would never intersect, via a minimal surface area hypersurface, a wormhole. In this sense,

the topological wormhole connects independent particle orbits in phase space which can

be extended to connecting n-particle orbits, which forms the n-fold trumpet geometry.

This is identical in topology to the n-fold replica wormhole geometry which are spacetime

wormholes that connect n spacetimes of the same dimension. It is noted that thus far this

subsection has been classical.

What about the quantum operators associated with the wormhole on these phase space

subspaces? The last step we have to do is known as symplectic reduction, a process which

involves looking at a subregion of the symplectic space Σ (an orbit) while preserving the

structure and symmetries of the system. The Guillemin-Sternberg geometric quantization

conjecture (proven in [27]) states that the order of geometric quantization and of symplectic

reduction can be interchanged without changing the result, so we chose to reduce and then

quantize. This is to simplify calculations which might lead to non-transcendental solutions.

The procedure is as follows. As is usual in quantum theories, consider a connected Lie group

G which acts on a manifold, which in this case is our symplectic manifold (Σ,Ω) with a

symplectic form/structure Ω. The action of a Lie group is said to be Hamiltonian when the

elements of its associated Lie algebra, denoted as g, possess associated vector fields that

are Hamiltonian. The Hamiltonian action of the lie group on Σ is equivalently described

by the moment map µ:

µ : Σ −→ g∗, (2.14)

where g∗ is the dual Lie algebra (much like how the tangent bundle is dual to the

cotangent bundle). We consider the identity of g∗ being 0 ∈ g∗ and consider the submanifold

this corresponds to in Σ given the inverse map µ−1(0) =M ⊂ Σ. The logic behind selecting

this region is similar in principle to working near the identity of the lie algebra to generate

its elements via an exponential map; there is enough information within M that we don’t

need to consider the full symplectic space Σ. If G acts freely on M (it has no non-trivial

fixed points) then it turns out that if the quotient space M/G is a smooth manifold, then

it inherits a non-trivial symplectic structure. Thus we say that M/G is the symplectic

reduction of Σ that inherits a unique symplectic form ω whose pullback from Σ to M is

exactly the restriction of Ω to M . In this case we call M/G the orbit of the system which

is the set of elements in M that can be moved by elements of G. On these orbits the

symplectic form is not exact is an indicator of the presence of topological wormholes. This

relates direct to non-factorization of the partition function of topological wormhole (we

will see in a bit it is also an indicator of entanglement).

Now that we have selected an orbit for the system which will reduce calculation com-

plexity, we quantize it using geometric quantization as we covered before. From the clas-

sical observables of the system we can construct the set of quantum operators acting on

the Hilbert space as [14]: O(σ, θ) = Jm(σ), σa,W (θ). Here σa commute with the un-
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perturbed Hamiltonian H0 as such are Noether currents, Jm are Casimir operators (such

that J2 = σaσa), and W (θ) are open Wilson lines. Similar to usual spin eigenkets |j,m⟩
in quantum mechanics, here we have eigenkets |j,m, s⟩ associated with the eigenvalues of

the operators O(σ, θ), where the extra quantum number s comes from a degeneracy of

irreducible representations of the σ operator algebra with the same value of the Casimir

eigenvalue. The different quantum numbers (j,m, s) correspond to whether or not the

orbits that are connected by the topological wormholes are classically correlated, quan-

tum entangled, or classically uncorrelated [13]. It is noted that the different values of

the Casimir eigenvalues corresponds to different leaves of the foliation of the complexified

tangent bundle when performing a geometric quantization of the orbit.

Finally, much like how there is a correspondence between spacetime wormholes and

entangled states when looking at AdS spaces, here we have a correspondence in the form

of the partition function of the n-fold topological wormhole is identical to the n-th Rényi

entropy (entanglement entropy) of a thermo-mixed double state. A thermo-mixed double

state is similar to the thermofield double state, with the exception that the two CFTs need

not be identical, and that the two systems the wormhole connects are different inverse

temperatures β. In this sense spacetime wormholes connect different universes and topo-

logical wormholes connect different orbits, both which are dual to entangled thermofield

double states. In the following work we look at applying this formalism to qubit systems

admitting topological wormholes which are subject to arbitrary well potentials.

3 Wormholes in Qubit Networks

Now we look at topological wormholes in the context of qubit systems, and how its entan-

glement structure may be modified with an arbitrary distribution of potential wells.

3.1 Entanglement Structure of Qubits

There is a lot of mention of how the non-exactness of the symplectic form Ω gives rise to

wormhole geometries, but it is not very intuitive. We can have a clearer picture of this

manifestation in the context of qubit systems. We will also see how to further characterize

different entangled states through different orbits.

In classical computers, the infinitesimal information required for computations are

given by bits which take a value from the set {0, 1}. On the other hand, qubits are an

extension of this where we can have some state |ψ⟩ that it is a superposition of these binary

values, given by |ψ⟩ = α |0⟩+ β |1⟩ for some coefficients α, β ∈ C. The advantages of using

such a construction for computations in a quantum computer is the non-localization of

information through entanglement. For a system admitting n-entangled qubits, if a subset

of the system is corrupted, the information is still globally preserved. This is characterized

by the entanglement entropy which tells you how much information is lost when looking

only at a subset of the system.

Now, to preserve unitarity of the system we require that the state evolves under unitary

operators which make the norms of quantum states invariant. Consider a basis in R3, where

on one of the axes we associate the positive direction to be the state |0⟩ and the negative
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direction to be |1⟩. The state |ψ⟩ is some vector represented in R3 in the qubit basis where

its direction dictated by α, β and has unity norm. We can consider the action of a unitary

symmetry group on the state which rotates it, and keeps it in a superposition of |0⟩ and

|1⟩. If we apply all possible unitary transformations, this traces out a unit 2-sphere which

represents all possible states of |ψ⟩: its Hilbert space H. This is known as the Bloch sphere

and looks like the following:

Figure 1. Representation of a spin-1/2 particle with the Bloch sphere in three dimensions.

The Bloch sphere is a Hilbert space for a single particle with spin, and is described

by the complex projective space CP1 with coordinates zi. The associated spin operators

of the Bloch representation are Sa = (1/2)z∗i σ
ij
a zj , where σa are the usual spin-1/2 Pauli

matrices [12]. For a system of two qubits (which we take to be entangled) with no inter-

action or external fields, the system is represented as CP1 × CP1. This can be embedded

as diagonal blocks in CP3 and explain the local properties of the system. However, for

non-local correlations such as those that arise from wormhole geometries, the embedding

is no longer diagonal and the full CP3 system must be considered. This is analogous to

spacetime metrics no longer being diagonal when some external field is turned on and it

breaks some of the spacetime isometries. This gives us a new interpretation of the condition

of the symplectic form: globally we cannot make the symplectic form exact nor diagonally

embed CP1 × CP1 into CP3 due to non-local contributions arising from wormhole geome-

tries. However, locally these contributions are not present and so we can construct the

symplectic form to be exact and diagonally embed the two-qubit system. In this case,

much like the presence of a non-exact symplectic form, the non-diagonal embedding means

the presence of topological wormholes in the phase space of the quantum system.

What about the entanglement structure of these pairs of qubits? Let’s consider the

case where an entangled pair of qubits lives on the conformal boundaries of the eternal

black hole. To look at its entanglement structure we must consider moduli spaces with

orbits fibred over them. In quantum gravity, the moduli space is the space of all possible

solutions or configurations of a physical system. An example of such is the space of all
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possible metrics endowed on the internal space to be compactified in string theory. Now,

for each asymptotic boundary (left and right) we consider a subset of diffeomorphisms that

leave the conformal boundary conditions invariant, given by GL/R. This gives us a total

asymptotic symmetry group: GL × GR. Moreover, the set of diffeomorphisms that leave

the spacetime bulk information invariant is given by the diagonal subgroup of GL × GR

and is given by GD [19]. Thus, we define the moduli space G of the system as the quotient

of these groups:

G =
GL ×GR

GD
. (3.1)

The moduli space contains parameters or degrees of freedom† which fix the particular

bulk spacetime solution. Thereafter, we consider a fibre bundle construction where the

base space is the moduli space previously defined, and the total space is the union of

all Hilbert space fibres over each point in the moduli space. Following the description

of geometric quantization in the previous sections, the fully quantized quantum Hilbert

space is the set of all sections of the bundle. How do we define the Hilbert spaces at each

fibre? For the general case of qubits, instead of considering the projective Hilbert space

CP3, we instead take submanifolds of CPn2−1 for an (n×n)-dimensional bipartite quantum

theory (both qubit states have their own n-dimensional Hilbert space) [19]. Like in the

case in section 2.3, our space is too large for the configuration space and so we have to

select submanifolds of it. The submanifolds of H are orbits which are quotient spaces that

are associated to different values of entanglement. These are constructed by quotienting

local unitary transformations of the bipartite system — described by U(n) × U(n) — by

symmetries of the entangled state for a given value of entanglement entropy. The quotient

space subspaces are known as entanglement orbits which describe all possible states of

the system. These are closely related to the symplectic orbits in the topological wormholes

section which describes all possible evolutions of the system. In either case the contribution

to the wormhole partition function is still integrating the symplectic form Ω over an orbit.

Much like the case with CP3, there is no diagonal embedding of spaces within CPn2−1 due

to non-local wormhole structures. Instead different orbits of CPn2−1 give rise to different

entanglement orbits [19] for a given value of entanglement entropy. For example, a product

state with vanishing entanglement entropy lives within the orbit CPn−1×CPn−1. We note

that the symplectic form Ω of CPn2−1 vanishes when restricted to this orbit and so does

not give rise to any wormhole contributions to the gravitational path integral. On the

other side of the spectrum, states with maximal entanglement entropy live within the orbit

1l× SU(n)/Zn. Finally, there is a defined spectra of states that are between vanishing and

maximal entanglement entropy which live in the orbit:

U(n)

U(1)n
× SU(n)

Zn
. (3.2)

†Recall in the previous section that a time parameter δ emerged from the transition functions at the

horizon of the black hole. This is in fact a bulk degree of freedom and is an element of G.
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The intermediate entanglement entropy orbits (and their volumes) are labelled by the

external parameters of the theory’s Hamiltonian. Both the orbits of maximally entangled

and intermediately entangled states will contribute to the gravitational path integral in the

form of integrating Ω over the orbits. Being that there are more states with vanishing en-

tanglement entropy, the orbit of the null-entanglement entropy states is much larger (larger

symplectic volume) than the orbit for say, the maximally entangled states. Moreover, it is

possible define operators such that states can flow between different orbits [19].

Does this have any connection to the topological wormholes we saw in the previous sec-

tion? Yes! The orbits of non-vanishing entanglement entropy are in fact Lagrangian sub-

manifolds of the total projective Hilbert space CPn2−1 each endowed with a non-vanishing

curvature 2-form. This means these orbits are symplectic spaces (much like the orbits

as a result of symplectic reduction) with symplectic forms Ω defined on them. Each of

these orbits have a corresponding geometric phase Φ which is obtained via integrating the

symplectic form over the orbit volume:

Φ =

∫
Ω =

∫
dσa ∧ dσb Ωab, (3.3)

where σa are the coordinates on the orbit. This is equivalent to the geometric phase

calculated with the Berry curvature form in section 2.3, and contributes wormhole cor-

rections to the gravitational partition function of the system. This is due to the orbits

having non-trivial holonomy. Furthermore, being that this is an integral over the sym-

plectic volume, it also characterises the number of states within a specific entanglement

orbit [19].

Now that we have looked at the entanglement structure of qubit systems via entan-

glement orbits, we move on to including potential wells which modify the entanglement

structure the system in the following section.

3.2 Entangled Qubits in Potential Wells

In the context of quantum gravity we have considered two independent systems allowed to

interact via some extremal geometry. This manifests in the form of wormholes, whether

it occurs in spacetime to connect independent universes or quantized symplectic spaces

to connect independent particle orbits. Thus far these systems have been completely in-

dependent until connected via wormholes so it would be interesting to study a system

which is initially only partially independent. For example one could consider particles in

separate infinite wells which constitute independent quantum systems. However, if we let

the potentials be finite then there is a probability of these two classically separate systems

interacting via quantum tunneling. These tunneling events extend the possible dynamics

of the particles and consequently contribute non-perturbatively to the partition function

of the particle ensemble from which we derive the statistical properties of the system. We

look at how this affects the entanglement structure of qubits in potential-well lattices and

the relationship between the non-perturbative wormhole and tunneling contributions to

the system’s partition function. To demonstrate this we study a 1D system of two particles
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each with confined to a finite potential-well. This can be extended to an N -dimensional

system with M particles in a straightforward manner, but this won’t be covered here.

The evolution of this quantum system is governed by its Hamiltonian H but it is im-

portant to establish the formalism in which this arises. When we looked at topological

wormholes connecting symplectic submanifolds — particle orbits — we constructed the

quantum Hilbert space H as the collection of all square-integrable sections of a line bun-

dle over the system’s symplectic phase space. Thereafter, to describe the entanglement

structure of a bipartite quantum system of qubits we looked at the bundle formed by the

quantum Hilbert space H over the system’s group moduli space G. For a given point in

the moduli space, certain submanifolds of the Hilbert space — entanglement orbits —

gave us the minimum amount of information to describe the entanglement structure of

the system. Identical to the case of particle orbits, these entanglement orbits could be

connected by extremal geometries — wormholes — due to the non-exactness of the associ-

ated symplectic form. How then would we describe the dynamics of these particles moving

through spacetime? This would be of what bundle to construct to extract the system’s

Hamiltonian.

To do so we consider a Hilbert bundle H as the fibration H → R, where H is the quan-

tum Hilbert space of the system and R is the domain of the proper time t which parametrizes

the worldlines of the particles in its ambient spacetime M. To allow for the inclusion of

internal symmetries we define the associated endomorphism bundle End(H) = H⊗H∗ for

some dual Hilbert space H∗. Furthermore, to define an action we require differential forms

to integrate over the spacetime. The set of all differential forms is given by the exterior

algebra over the cotangent bundle of T ∗R, denoted as ΩT ∗R. Combining the information

of the internal symmetries and forms can be achieved via a tensor product between the two

structures as End(H)⊗ΩT ∗R. If we select some fibre t ∈ R in this bundle, we can impose

a local trivialization to define the flat connection as the canonical 1-form A. This form is

given by the sections Γ of its bundle and is defined as:

A = Hdt ∈ Γ (End(H)⊗ΩT ∗R) . (3.4)

Here H is an endomorphism known as the Hamiltonian operator, and dt is the 1-

form associated with the fibre point t. Because the form includes the information of

the endomorphism, we say A is an endomorphism-valued differential form. With this we

have the Hamiltonian to give us information on the dynamics of the system. The parallel

transportation of A over the bundle corresponds to time evolution of the system and allows

us to evolve the qubits in time.

For a 1D lattice with two sites — denoted by L and R for the left and right site —

each with a particle confined by a well, we have the following Hamiltonian:

H = HL +HR =

(
p2L
2m

+ VL(x)

)
+

(
p2R
2m

+ VR(y)

)
, (3.5)

whereHL/R are the Hamiltonians of the left and right systems, pL/R are the momentum

of the particles, VL/R are the potentials centered at the sites, m is the mass of each particle,
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and (x, y) are the trajectories of the two particles. The potentials are constructed in a way

that their interface with other potentials is finite with a height of λ, but pieces of the

potentials that are on the boundary of the lattice are infinite. This confines the particle to

the bulk of the lattice where they are allowed to quantum tunnel. Using reflective boundary

conditions coming from the asymmetric wells on the wavefunction of the particles, and for

sufficiently small k ≪
√
2mλ , we get the energy levels of the system as:

Enk = E(L)
n + E

(R)
k = 2π2λ

[
n2f−2(α− 0) + k2f−2(γ − β)

]
. (3.6)

Here λ is the height of the internal portion of the wells which separate the particles,

(n, k) are the energy levels of the left and right particles, (0, α, β, γ) are the edges of the

confining particle wells, and f(τ) ≡
√
2 + 2τ

√
mλ is some 1-parameter function of the

potentials. For this system we define the separable 2-particle state as as:

|ψ⟩ =
(
|n⟩⊗|σ⟩

)
⊗
(
|k⟩⊗|ρ⟩

)
. (3.7)

Here (|n⟩ , |k⟩) are the energy eigenstates of the left and right systems, and (|σ⟩ , |ρ⟩) are

the spin eigenstates for the different particles. For the study of the entanglement structure

we can ignore the independent spin part of the state which leaves us with |ψ⟩ = |n⟩ ⊗ |k⟩.
We could extend this and consider an entangled state, such as the thermofield double state

(TFD) which admit a class of entanglement orbits for different entanglement entropies.

To study the non-perturbative nature of quantum tunneling events, we first begin with a

separate product state, and then move on to an entangled thermofield double state.

3.2.1 Separable States

For a pair of particles within a potential-well lattice of two sites, we construct their two

particle state as a tensor product of their energy eigenstates. Such a state can be separated

and so does not posses the property of entanglement. This means that the system lacks a

non-trivial entanglement structure which efficiently stores information about the particles

in a compact manner. Within the barriers of the lattice the particles can quantum tunnel

through classically forbidden regions to interact with each other in different ways. Each

one contributes to the system’s partition function non-perturbatively such as in the form of

an instanton. Of all different ways that the particles evolve with time, we consider the case

where the particles swap positions and thus both tunnel through the barrier in opposite

directions. For an initial particle state |Ω⟩ = |n⟩⊗|k⟩∗, and a final swapped particle state

|℧⟩ = |k⟩∗⊗|n⟩, the transition amplitude K of this event is given by the following path

integral:

K(Ω,℧) = ⟨℧| e−i(HL+HR)t |Ω⟩ =
∫ ℧

Ω
Dx Dy eiS[x,y;Enk], (3.8)

where S[x, y;Enk] is the action functional, (HL, HR) are the Hamiltonian operators,

and {Dx,Dy} are the usual path integral product measures associated with the particle

trajectories {x(t), y(t)}. In the case that classically the particles cannot pass through

the well while evolving Lorentzian time, we analytically continue the temporal domain to
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evolve instead in imaginary Euclidean time to quantum tunnel through the barrier. This

transition amplitude shows to be non-perturbative and will contribute to the system’s

partition function. Furthermore, the integrand is complex and so one must select contours

in some complex plane to compute the integral. Over what complex planes do we integrate

this over and how do we select the corresponding contours in said planes? For this we have

to look a bit beyond the current analysis being used. Instead of considering particles tracing

out a trajectory in the 1D space over time, we can instead consider them as moving along

worldlines in some spacetime. For our case this could be some 1+1D spacetime M with

non-trivial curvature and topology. To ensure closed form solutions we choose to foliate the

spacetime into equivalent time slices (hypersurface leaves) or Cauchy surfaces Mt, which

are parametrized by some global time coordinate t. Being that the parametrization of time

is allowed to be arbitrary, this causes some ambiguity in the definition of time flowing in

the system. What we can do — as is done in the ADM formalism of quantum gravity —

is impose reparametrization invariance via the symmetry t→ N(t)t which gives rise to the

following Lagrange multipliers [28]:

N(t) = −tana =
1

na∇at
, Na(t) = habtb. (3.9)

Here N(t) is the lapse function which allows you to transport between the spacetime

leaves, Na is the shift functions which allows you to move along the surface of the leaf (for

a fixed t), ta are the vector fields defined between the leaves which represents the flow of

time through the spacetime M (with indices a, b), na are vector fields which are normal

to the leaves, hab are the metrics induced on the foliation leaves, and ∇a are the covariant

derivatives on the leaves. This decomposition of the spacetime via foliation along with the

flow of time through its leaves can be visualized with the following figure:

Figure 2. Flow of time through different constant-time hypersurfaces of the spacetime M. Here we

can flow between leaves using the lapse functionN , move along the leaves with the shift functionNa,

and these combined gives a time flow in the spacetime given by ta. These functions are eliminated

by gauge transformations and so do not represent inherent physical DOF; they only give us a

prescription for time evolution over leaves of a foliated spacetime.
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This reparametrization of time (t→ N(t)t) transforms the transition amplitude in the

following way:

K(Ω,℧) =
∫

DN(t)

∫
Dx(t) Dy(t) eiS[N,x,y]. (3.10)

For classical particle evolution we would integrateN(t) over the real line R. This can be

deformed to the complex plane C via analytic continuation to include classically prohibited

evolutions which can include quantum tunneling events. One could in principle fix N = 1

for classical particle evolution, and N = −i for moving in imaginary Euclidean time τ = it

where you can quantum tunnel. When you introduce an imaginary lapse function like

N = −i you are essentially modifying the equations governing the evolution of spacetime

and particles. This modification introduces complex numbers into the equations which can

lead to non-classical, quantum effects. For our system the lapse function cycles between

classical to quantum to classical evolution: N(t) → {1,−i, 1}. For the case of two particles

in the lattice wells with a reparametrized theory over hypersurface leaves, we get the action

of the system as [29]:

S [N, x, y; t] =

∫
dt N

{
m

2N2
(ẋ2 + ẏ2)− VL(x)− VR(y) + Enk

}
. (3.11)

On a leaf of the foliation we fix N(t) = N . The computation of the path integral

in equation 3.10 is very complex but it is sufficient to expand the integrand around its

stationary points — as they give the leading contributions in the expansion — which is

known as saddle point expansion. To be able to do this we need to expand the integrand

exp(iS) in regions where it asymptotically converges and contours in this region go along the

direction where the integrand does not strongly oscillate. The question is how do we select

contours which go through the saddle points and are in regions of asymptotic convergence

C . For this we will make use of Picard-Lefschetz theory which selects cycles on contours

based on the steepness of the parameter space. We note that we are allowed to deform the

contour via an extension of the Cauchy integral theorem of it belongs to the same relative

homology class†. Over these cycles of the homology class we select contours where the

integrand does not oscillate strongly which are known as steepest descent paths Γ(t). In

the more general case of a complex integrand functionals, we deal with the generalization

of steepest descent paths in C known as Lefschetz thimbles. For all stationary points φσ of

the complexified action with indices σ, the Lefschetz thimbles Jσ are the unions of all the

steepest descent curves that fall in φσ for t→ ∞ which satisfies [30]:

dzj

dt
= −i∂S(z)

∂z̄j
. (3.12)

Here zj are the complexified trajectories of the action, and S̄ is the complex conjugate

of the complexified action. In general thimbles are manifolds of real dimension n immersed

in Cn. This gives us a prescription on how to select the cycles and contours to integrate

the path integral transition amplitude given by equation 3.10: instead of integrating over

†Describes the difference between homologies on subspaces of the system.
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the full complex plane, we integrate over different the different thimbles which go through

the stationary/saddle points φσ. This looks like the following:

K(Ω,℧) =
∫

DN
∫

Dx Dy eiS[N,x,y] =
∑
σ

nσ

∫
Jσ

DN
∫

Dz Dz̄ eiS[N,z,z̄]. (3.13)

Here nσ are integer coefficients which is the intersection number of thimbles Jα and

the steepest ascent paths Kσ. This tells us how strongly the real part of the path integrand

changes near the saddle points. In such a case we can write the region of asymptotic

convergence of the integrand as the sum of the different thimbles C = nσJ σ. To compute

the path integral we expand the integrand functional and compute the classical solutions

of the equations of motion (EOM) of the action. To compute the EOM of the action we

take the functional variation of the action to vanish δS = 0. We are left with the following

EOM:

m

2
(ẋ2 + ẏ2) +N2(VL + VR) = N2Enk

ẍ = −N
2

m

δVL
δx

, ÿ = −N
2

m

δVR
δy

.
(3.14)

Being that the wells are piece-wise constant, the RHS of the equations of motion for

(x, y) vanish. Furthermore for given initial and final positions given respectively by (x0, y0)

and (x1, y1), and the fact that particles swapped position (y1 = x0 , y0 = x1), we get the

following classical solutions as xc(t) = (x1 − x0)t+ x0 and yc(t) = (x0 − x1)t+ x1. When

plugged in the action in equation 3.11, we get the following lapse function dependent action

functional:

S[N, xc, yc, ] ≡ S(N) =
m

N
(x1 − x0)

2 +N(Enk − VL − VR). (3.15)

We can compute the saddle points of the functional by solving the equation ∂S/∂N = 0

which give us the following complex points:

φσ = ±(x1 − x0)

√
m

Enk − VL − VR
. (3.16)

These saddle points have associated thimbles in which Re[iS(N)] decreases and in-

creases monotonically on Jα and Kα. This tells us where to expand the path inte-

grand around — about the saddle points — which have a class of steepest descent curves

passing through them (the thimbles). Now we are ready to compute the path inte-

gral. Following the approach used in [29], we make use of a semi-classical approxima-

tion whereby we perturb the classical particle fields with Gaussian fluctuations, giving us:

x(t) = xc(t) +Q(t), y(t) = yc(t) + Q̃(t), where (Q, Q̃) are the Gaussian fluctuations about

the classical backgrounds (xc, yc). Plugging this into the action functional in the path

integral, we get the following:
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K(Ω,℧) =
∫

DN(t) exp(iS(N))

∫
DQ(t) exp

(
i

∫ 1

0
dt

1

2
mQ̇2

)∫
DQ̃(t) exp

(
i

∫ 1

0
dt

1

2
m ˙̃Q2

)
=

∫
dN√
N

exp(iS(N))

(√
m

2πi

)(√
m

2πi

)
=

m

2πi

∑
σ

nσ

∫
Jσ

dN√
N

exp(iS(N)).

(3.17)

From the first to the second inequality we used a Gaussian path integral identity for

the path integrals over the Gaussian fluctuations, and as for the lapse function measure

we note that we have fixed N(t) = N and so the path integral measure reduces to the

above 1D measure. The third equality comes from reducing the integration domain to be

the thimbles associated with the action’s stationary points φσ. Now the question becomes:

what contours do we select when integrating near the fixed points? To do so we must look

at the regions in the complex lapse-function plane Λ = Re(N)×Im(N) where the integrand

exp(iS(N)) weakly oscillates. To see where the steepest path descents are, we plot the real

part of the interand which looks like the following‡:

Figure 3. The function Re[iS(N)] plotted over the complex lapse-function plane Λ with the

corresponding saddle points φσ. The left figure is an example plot for a double-oscillator potential

while the right figure is for a double-well potential. Depending on the range of N selected, we are

allowed to pick a different amount of contours of the thimble.

For the case of the double-oscillator potential, if the range is selected to be N = (0,∞)

then the only contour in the thimble we can select starts in the centre and goes through

φ4 [29]. If the range is instead N = (−∞,∞) we can either select a contour that passes

through all the saddle points, or one that only passes through the bottom two. The

‡To visualize the function over the complex plane, we select the parameters (m,Enk, x0, x1, , VL, VR) =

(1, 0, 0, 20, 15, 15).
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different selection of lapse-function ranges and thus contours will contribute differently to

the path integral. For our case we want all the saddle points to contribute and so we take

the full range N = (−∞,∞) to allow us to select a contour in the thimble that passes

through both saddle points, which also satisfies the condition of steep descent. With this

we can expand the action function S(N) around the saddle points and integrate over the

contours. Note that we ignore higher order terms O(N −φσ)
3 as they are much smaller in

magnitude in comparison to the leading order terms. To simplify the expression, we can

rewrite the polynomial terms of the expansion as (N − φσ) ≡ Reiθσ (in essence a variable

transformation), which gives us the following result:

K(Ω,℧) =
m

2πi

∑
σ

nσe
iθσ 1

√
φσ

exp (iS(φσ))

∫
Jσ

dR exp

−1

2

∂2S
∂N2

∣∣∣∣∣
φσ

R2


=

m

2πi

∑
σ

nσe
iθσ

iφσ
∂2S
∂N2

∣∣∣∣∣
φσ

− 1
2

exp (iS(φσ)) .

(3.18)

Here to get from the first to the second inequality we computed the Gaussian integral

over the measure dR. In our case the intersection number of ascent and descent paths are

unity nσ=1. Furthermore, we compute the derivatives of the action S(N) and the saddle

point phases θσ = π/4− (1/2) arg(∂2S/∂N2|φσ) which gives us the following result for the

particle swapping transition amplitude:

K(Ω,℧) =
m(1 + i)

4πi
√
Enk − VL − VR

[
exp

{
iπ

4
− ig(1)

2

}
exp

{
2i(x1 − x0)

√
m(Enk − VL − VR)

}

+ exp

{
iπ

4
− ig(2)

2

}
exp

{
−2i(x1 − x0)

√
m(Enk − VL − VR)

}]
.

(3.19)

Here g(σ) ≡ arg[2m(−1)σ(x1−x0)
−1( m

Enk−VL−VR
)−3/2] is a function defined for conve-

nience. This contributes to the system’s partition function non-perturbatively and is in fact

an instanton contribution. In the following subsection we consider the same setup except

where instead of a separable state of two particles, we consider an entangled thermofield

double state.

3.2.2 Entangled States and Wormholes

In this section instead of a separable particle state such as |Ω⟩ = |n⟩⊗|k⟩∗ for two particles

at a different energy levels, we instead consider an non-separable, entangled TFD state of

particles at the same energy level. We thus define the initial and final states as:

|Ω⟩ = 1√
Z(β)

∑
n

e−βEnn/2 |n⟩⊗|n⟩∗ , |℧⟩ = 1√
Z(β)

∑
n

e−βEnn/2 |n⟩∗⊗|n⟩ . (3.20)
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Here we have the system at a fixed inverse temperature β, and the energy levels simplify

due to the fact that both particle states are at the same energy level Enk → Enn. We use a

TFD state being that we consider the case where we have doubled the DOF of the system

(two copies of the original quantum theory). Unlike the previous section, we can have

different non-vanishing values of entanglement entropy which are associated with different

entanglement orbits. Why these orbits are of interest is that for a given bipartite system

(two particles of some arbitrary level system) we can classify all the possible states of

the system efficiently for a given value of entanglement entropy as points on these orbits.

The way to flow between different orbits of entanglement is through combinations of local

unitary operators [19] and so this gives us a prescription to globally describe the entangled

system for different values of entanglement. Moreover these orbits maybe be connected

via extremal geometries (such as topological wormholes) due to the nature of having a

non-exact symplectic form defined on it and that they are Lagrangian submanifolds of

the system’s projective Hilbert space. Such a connection would give us additional terms

to the partition function and modify the dynamics of the particles but for this section

on entangled states in potential-well lattices we will focus on tunneling as the principle

non-perturbative correction.

A potential modification would be to the system’s Hamiltonian. Usually TFDs are

used in the context of the eternal blackhole which has two copies of the same CFT existing

on its two conformal boundaries. Being that the time flows in different directions on the

two boundaries evolve — and for it to still be dual to a geodesic in a wormhole geometry —

we must impose that H = HL −HR [23]. This is also convenient as this formalism makes

the TFD state time-independent [17]. We don’t want this as we want our TFD state to

evolve in time and swap after the tunneling event. In our case we have partially separate

quantum systems but time flows in the same direction along the different foliation leaves

and so we stick with H = HL+HR. This means that the TFD states we use in this section

are not dual to geodesics along spacetime wormhole geometries.

Now, being that the system is entangled how do we compute these different entanglement

orbits? First, we must compute the entanglement entropy. For this we must consider

the Schmidt coefficients (coefficients of the expansion of a general bipartite state) of the

entangled state, which are equal to the square root of the eigenvalues of the reduced density

operator [31]. This can be obtained by tracing out one of the particle subsystems as follows:

ρL/R = trR/L(|Ω⟩ ⟨Ω|) = e−βHL/R (3.21)

From this we can compute the Schmidt coefficients κn by taking the square root of the

eigenvalues of ρL/R as:

κ(L/R)
n =

√
e−βπ2k2/2mα2 ,

√
e−βπ2k2/2m(γ−β)2 . (3.22)

From this we want to look at the entanglement entropy of the system which tells us

how much information is lost when looking at subsystems. We can compute compute the

entanglement entropy of the subsystems via:
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SL = −
∑
n

(κ(R)
n )2 log(κ(R)

n )2 =
βπ2

2mα2

∑
n

n2 exp
(
−βπ2n2/2mα2

)
SR = −

∑
n

(κ(L)n )2 log(κ(L)n )2 =
βπ2

2mα2

∑
n

n2 exp
(
−βπ2n2/2m(γ − β)2

) (3.23)

We can recover the total entanglement entropy stored within both of the subsystems

via addition S = SL + SR. Now, what type of entanglement is our system under? The

classification is as follows. If there exists only one non-zero Schmidt coefficient, the state of

the entangled system is separable and is not entangled. If all the coefficients are identical,

then state is maximally entangled, and if its somewhere in between then it is simply inter-

mediately entangled. The degeneracy of the Schmidt coefficients is labelled by coefficients

mj but for our system without degeneracy the coefficients are unity mj = 1. Furthermore,

since our system isn’t a finite N -level systems such as in [19, 31] as there is no upper

bound on the energy states of the system. Given this, the entanglement orbits reduce to

the following quotient space:

O = lim
N→∞

[
U(N)∏
j U(mj)

× U(N)

U(m0)× U(1)

]
= lim

N→∞

[
U(N)

[U(1)]N
× U(N)

[U(1)]2

]
. (3.24)

Here the first equality has its first element in the base manifold while the second term

of the product is in the fibre. Thus locally this gives us a region of the Hilbert bundle

with a local trivialization. From this we can obtain the different entanglement orbits for

the different entanglement types. For cases of separable, intermediately entangled, and

maximally entangled states, respectively the orbits reduce to the elements of the set set:

{O} = lim
N→∞

{
CPN−1 × CPN−1,

U(N)

[U(1)]N
× SU(N)

Zn
, 1l× SU(N)

ZN

}
. (3.25)

These different entangled orbits — which are symplectic sub-bundles of the Hilbert

bundle — tell us all possible states that could be given for that value of entanglement

entropy. What’s more is that we can flow between different entanglement orbits via linear

combinations of local unitary transformations UL ⊗ UR which come about when evolving

the state in time with an interaction Hamiltonian [19]. Moreover, the fact that the orbits

are compact symplectic sub-bundles of the Hilbert bundle, a non-exact symplectic form Ω

would elude to extremal geometry of arbitrary topology connecting different independent

orbits. This would induce extra terms to the systems partition function path integral and

allow the system to evolve different when interacting with each other.

What happens to the transition amplitude with a TFD state? The transition amplitude

changes with the replacement of TFD states:
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K(Ω,℧) =
1

Z(β)

∑
n,k

e−β(Enn+Ekk)/2 ⟨k|∗⊗⟨k| e−i(HL+HR)t |n⟩⊗|n⟩∗

=
1

Z(β)

∑
n,k

e−β(Enn+Ekk)/2

∫ ℧

Ω
Dx Dy eiS[x,y;Enk]

(3.26)

This sums over the different tunneling amplitudes for the separate particle pairs at

different energy levels. This modifies the transition amplitude to:

K(Ω,℧) =
m(1 + i)

Z(β)

∑
n,k

e−β(Enn+Ekk)/2

4πi
√
Enk − VL − VR

[
exp

{
iπ

4
− ig(1)

2

}
exp

{
2i(x1 − x0)×

×
√
m(Enk − VL − VR)

}
+exp

{
iπ

4
− ig(2)

2

}
exp

{
−2i(x1 − x0)

√
m(Enk − VL − VR)

}]
.

(3.27)

Once again, this gives us a non-perturbative contribution to the partition function path

integral as the entangled swap after quantum tunneling through the bulk lattice potential

well. The two terms inside inside the argument of the large bracket each contribute as an

instanton term, much like in the case of separable particles. In the following section we

look at relating the non-perturbative contributions of the topological wormholes and those

of quantum tunneling events.

3.3 Wormhole-Tunnelling Correspondence

This section is for the consideration of relating wormholes to quantum tunneling events in

a bipartite systems of entangled qubits in potential-well lattices admitting wormholes. The

case of a two particle TFD state that swaps position and thus has two particles quantum

tunneling, this corresponds to two instantons (solutions to the EOM which as critical points

of the action that are localized in space and time). Instantons are the leading quantum

corrections to the classical behaviour of systems which appear in the path integral. They

are used to study tunneling between topological vacua in non-Abelian gauge theory such as

Yang-Mills theory where they are self-dual connections in a principal bundle of the system’s

spacetime. An example of an instanton is the BPST instanton that has relevance in string

theory which is the classical solution of the Yang-Mills field equations, which is found when

extremizing the SU(2) Lagrangian density:

L = −1

4
F a
µνF

µν
a . (3.28)

Here the instanton is a solution with a finite action as so F a
µν must vanish at the

conformal boundary of the spacetime. These instantons act as solutions with non-trivial

topology that correspond to gauge transformations at the conformal boundary which can-

not be continuously deformed to unity. Being so, we say the BPST solution is topologically

stable. What about its connection to wormholes? Work has been done looking at spacetime
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wormhole creation via quantum tunneling [32]. The argument of their work was based on

analytically continuing some FRW Lorentzian spacetime to a Euclidean spacetime as τ = it

(to allow for non-classical evolution) and that the geometry of the instanton can develop

a neck in the Jordan frame when minimally coupling the QFT to gravity. This process of

analytic continuation is exactly the same when we consider the lapse function N(t) being

defined over the whole complex plane to allow for classically forbidden particle evolution.

These necks which develop during metastable vacuum decay processes can be connected

to form the usual wormhole geometry in spacetime. What’s more is that the preparation

of this instanton geometry is done in imaginary time, and then is evolved with real time,

much like is the case for the TFD state which is dual to geodesics in wormholes hypersur-

faces. These connected throats represents a double Euclidean instanton which creates a

pair of entangled universes [33]. In our case of entangled qubits in potential well lattices,

the non-perturbative contributions come from two instantons in the symplectic Hilbert

sub-bundles. This arises with quantum tunneling events and so these topological worm-

holes contributions are a result the two instanton symplectic throats. This demonstrates

a relationship between quantum tunneling and topological wormholes which are frame-

works that describe separate systems sharing independent information. These topological

wormholes that occur in symplectic Hilbert sub-bundles (instead of symplectic phase space

sub-bundles) connect different entanglement orbits. Thus we are left with the topological

entanglement structure of the entangled bipartite system efficiently. All possible states

which admit the same entanglement entropy are captured by the entanglement orbits,

and separate entangled bipartite quantum systems may interact in the form of topological

wormholes. Adding an external interaction to the system allows you to continuously flow

to different orbits of entanglement. The addition of topological wormholes add extra terms

to the system’s partition function due to the fact that these separate bipartite can now

non-locally interact. This ultimately modifies that dynamics of the particles in the system

non-perturbatively, much like with non-classical evolution through quantum tunneling.

4 Summary

In this report we have reviewed the topological structures wormholes in quantum gravity

and their relation to holographic entanglement. We initiated a study on the entangle-

ment structure of qubits in potential-well lattices with topological wormholes which lead

to non-perturbative contributions to the systems partition function in the form of topolog-

ical wormholes and quantum tunneling. In these lattices we demonstrate the relationship

between quantum tunneling events and wormholes with the use of instanton contributions

in the transition amplitude.
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A Appendix: Topological Wormhole Structure

The geometric construction of spacetime and topological wormholes relies on distinct frame-

works. However instead of delving into both, we can gain insight into the nature of worm-

holes by focusing solely on topology. By employing concepts such as foliations and cobor-

disms, we can develop an intuitive understanding of the mechanisms underlying wormholes

and their connection to entangled states.

A.1 Equivalence Classes

First, let’s review the concept of equivalence classes. Equivalences classes are sets where

all the elements are equivalent to each other in some way. Given a set X and some element

a ∈ X, the equivalence class of a in X is given by:

[a] = {x ∈ X : x ∼ a}. (A.1)

Here ∼ is the equivalence relation which tells us how two elements are equivalent (the

most common equivalence relation is the equal symbol =). Thus, the class [a] is the set of

elements of X that are equivalent to a, and is known as a partition of X. The set of all

equivalence classes or partitions of X is known as the quotient set, which is defined as:

X/ ∼ = {[x] : x ∈ X}. (A.2)

The quotient set is usually defined between two sets, such as X/Y for some other

set Y . This specifies the equivalence relation where two elements of a partition of X are

equivalent if they differ by an element of Y . What are some examples of equivalence classes,

or more precisely, quotient sets? In the context of topology we can look at homology and

cohomology groups over some manifold M to have some intuition, following [34]. We start

with what is known as de Rham cohomology. Let Cp be set of closed p-forms ωp such

that Cp = {ωp : dωp = 0}. Moreover, let Ep be the set of exact p-forms νp such that

Ep = {νp : νp = dαp−1}, where αp−1 is some (p− 1)-form. We can construct the de Rham

cohomology group as the quotient set:

Hp(M) = Cp/Ep. (A.3)

Here the elements of Hp are equivalence classes of closed p-forms on M , where the

forms are considered equivalent if they differ by an exact form:

ωp ∼ ωp + dαp−1. (A.4)

The cohomology group actually tells us quite a bit about the topology of M , but this

might seem too intuitive to think about this in terms of forms. We thus turn our attention

to simplicial homology groups. Consider p-dimensional submanifolds of M, Ni ⊂ M , each
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labelled by an index i. We can consider a p-chain ap as the sum over the submanifolds of

M :

ap =
∑
i

ciNi, (A.5)

where ci ∈ C are coefficients. A p-cycle is a p-chain that does not have a boundary

such that ∂ap = 0. We can now define the sets which we will quotient to form the homology

group. Let Cp be the set of cycles such that Cp = {ap : ∂ap = 0}, and Bp be the set of

boundaries such that Bp = {bp : bp = ∂bp+1}. The simplicial homology group of M is the

quotient set:

Hp(M) = Cp/Bp. (A.6)

The elements of the group are equivalence classes of p-cycles ofM , where two elements

of the equivalence classes are equivalent if they differ by a boundary:

ap ∼ ap + ∂cp+1. (A.7)

This can be visualized by the following figure [34]:

Figure 4. Visualization of the homology of a (p + 1)-torus. Here ap and a′p are p-cycles of the

torus, while cp+1 is a submanifold of the torus. The cycles ap and a′p are equivalent up to the

boundary of the submanifold which separates them, given by ∂cp+1. Thus we say ap is equivalent

to a′p ≡ ap + ∂cp+1 as in equation (A.7).

What does this have to do with topology? Well first off we can construct the topological

invariants based on these groups, which are quantities that are preserved under continuous

deformations or diffeomorphisms of the space. For example, the dimension of the coho-

mology groups are the Betti numbers given by bp = dimHp, which tell us the number of

linearly independent harmonic p-forms on M . Additionally, this describes the amount of

irreducible p-cycles of M . The connection between the homology and cohomology of M

is given by the Poincaré duality, which is an isomorphism between the cohomology and

homology groups:

Hp(M) ∼= Hn−p(M), (A.8)
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which holds ifM is a compact manifold for n = dimM , and p ∈ Z+. Although it might

not seem too informative, the cohomology group tells us what forms† can exist on M , and

the forms correspond to field operators in QFT. These field operators excite the theory’s

vacuum to give rise to particles, and so we say the topology of the space M tells us exactly

what kind of particles can exist on it. An example is the unit 2-sphere S2 which has the

Betti numbers b0 = 1, b1 = 0, b2 = 1. Here b1 = 0 tells us that S2 does not admit a global

1-form or dual vector field, which is a manifestation of the hairy ball theorem. This is a

direct result of the topology as if we punctured the unit sphere and deformed it to instead

be a 2-torus T 2, b1 would no longer vanish. In essence, the cohomology and homology

groups tell us what forms and submanifolds of M are allowed based on its topology.

A.2 Foliations & Cobordisms

Now with some intuition for equivalence classes and topological invariants, we move onto

foliations. A foliation is an equivalence relation on an n-manifold M through which we

decompose M into equivalence classes of its submanifolds. The equivalence classes of

submanifolds are known as the leaves of the foliation, and we say that M is foliated by

the leaves‡, meaning that we decompose M into its equivalent submanifold constituents.

Examples of foliations in physics include foliating a spacetime by decomposing it into

constant-time hypersurfaces as seen in figure 5, or the foliation of symplectic spaces when

performing geometric quantization.

Figure 5. Conformal diagram of the Minkowski spacetime with curvilinear coordinates. The

magenta curves represent an equivalence class of constant time slices of the spacetime, while the

purple curves represent an equivalence class of constant position slices. The spacetime can be

foliated by either equivalence class (the standard convention is foliation with constant time slices).

The green curve represents a worldline of an observer with an associated lightcone.

†For each p-form we have a corresponding rank p tensor field which is given by the musical isomorphism

that maps between the cotangent and tangent bundles of M , given by \ : T ∗M → TM .
‡The word is based on the identical structure of tree leaves occurring in nature, given by equivalence

classes of leaves for different tree branches. The inclusion of all the branches (partitions) gives the tree leaf

structure (quotient group).
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Next, we move onto cobordisms which can be used describe wormholes and (entangled)

particle creation in topological quantum field theories. A cobordism is an equivalence class

of compact manifolds of the same dimension. Two manifolds M,N are cobordant if their

disjoint union is the boundary of a compact manifold W which is one dimension higher; in

other words M ⊔ N = ∂W . Furthermore, for these manifolds to be cobordant they must

share topological properties such as Pontrjagin and Stifel numbers [35]. From this we can

construct cobordism classes which consist of all the manifolds that are cobordant to a fixed

manifold. More explicitly, two cobordisms in this class are considered equivalent if they

can be continuously deformed into each other. How exactly does this tie into the concepts

of wormholes? Consider the spacetime of a maximally extended Schwarzschild solution

(the eternal black hole) foliated by constant-time slices. These time slices are extremal

hypersurfaces of minimal area that connect regions of space [36], known as wormholes.

In this sense, wormholes are cobordisms of spaces with equal dimension such that their

disjoint union (the wormhole throat geometry) has minimal surface area. This describes

all the different regions of space we could connect that are related under an equivalence.

Wormholes belonging to the same cobordism class represent a set of wormholes that can be

continuously deformed from one to another [37]. Each wormhole geometry corresponding

to a constant-time slice of the spacetime is an element within a cobordism class. This

interpretation of wormholes holds for both the spacetime and topological kind.

What about the connection between wormholes and (entangled) particle creation? For

this we must extend the framework of topology to include quantum fields by looking at

2+1D topological quantum field theories. In such a theory, observables are topological

invariants meaning they do not depend on the spacetime geometry and particles are de-

scribed by topological defects on compact surfaces [38]. Furthermore, the theory contains

topological quantum numbers (topological charges) which are a consequence of the space’s

topological properties. Consider a compact disk over which we define a quantum field with

a globally vanishing topological charge. We then puncture the disk such that it now has an

internal and external boundary. Even though we have changed the topology of the disk,

the global topological charge still vanishes. We can imagine changing the topology again

with another puncture to have two internal boundaries within the disk. Despite the fact

that a measurement of the topological charge globally would still result in zero, a mea-

surement on each internal boundary separately could result in a non-zero value, meaning

the presence of a topological defect [39] (and hence particles). One boundary can have

an associated charge λ while the other boundary has the opposite charge λ̄ which would

preserve the condition of the charge vanishing globally but not locally, meaning we have

a topological defect. In this sense this is the creation of a particle-antiparticle pair [39].

Furthermore, if these particles are prepared in such a way where their wavefunction cannot

be factorized, they are quantum mechanically entangled. If you plot the spacetime history

of these disks (the constant time slices of the spacetime history are the separated disks),

we get the following [39]:
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Figure 6. Spacetime history of puncturing a disk. The left plot shows the topological changes of

the disk separately, while the right plot describes this change continuously over time as a spacetime

history. The resulting configuration for late times corresponds to a pair creation of particles [39].

The spacetime volume can be seen as a cobordism with non-smooth boundary com-

ponents or corners. The two manifolds which are cobordant in this case are a disk, and

a disk with a handle glued to its surface. The cobordism essentially defines an evolution

from an initial to final boundary condition of the spacetime. In this sense we could have

alternatively taken the disk and created a depression that ends up connecting two pieces

of the disk as [39]:

Figure 7. Topological modification of the disk over time. The disk is deformed to have a depression

via a diffeomorphism, which is followed by a homeomorphism that allows for a non-trivial genus to

form. The resulting geometry connects two regions of the disk via a tunnel [39].

This construction represents a wormhole connecting two regions of the disk. Both the

deformations of the disk which gave rise to either particle creation or wormholes result

in equivalent spacetime histories. This means that if we plotted figure 7 as a spacetime

history, it would result in the identical spacetime volume as in figure 6. This shows us

that wormholes correspond to (entangled) particle creation — such as is proposed by the

ER=EPR conjecture [5] — via cobordisms.
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