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1. INTRODUCTION

Given a prescribed dose of ionizing radiation, one would like to maximize the amount

received by the organ developing tumours, denoted as the clinical target volume

(CTV), and minimize the amount received by the ambient organs currently unaffected

by the tumours, denoted as the organs at risk (OAR). Generally this is done by

creating a plan in advance, contouring organs or structures in patient scans and

considering the dose-volume histogram (DVH), and the geometric-based expected

dose (GED). The DVH gives distributions for radiation levels for given volume of

structures, whereas the GED considers the physical limitations of the method whereby

the radiation is delivered by computing the distances between each structure and the

target surface for a given radiation field geometry. Fogliata et al. [2014a] In most

cases, the manual construction of a plan is both resource and time intensive, and

the process would improve in efficiency if there were quicker methods to achieve very

similar if not identical results. The solution in question is the RapidPlan algorithm,

which uses machine learning to train models for outputting plans for a given patient

and their corresponding set of structures.

2. MACHINE LEARNING

Varian’s RapidPlan solution uses supervised machine learning to output the pre-

dicted DVH and GED estimates. The following section outlines the underlying math-

ematics behind this.

A learning algorithm requires an input which is known as the training data set. The

set takes the form of a finite sequence S = {(x1, y1), . . . , (xn, yn)}, where xi ∈ X is a

D-dimensional feature vector describing a set of structures or rather a data point, and

yi ∈ Y is the label corresponding to it’s attribute xi. Next, the algorithm requires

an output: a predictive function known as a hypothesis that acts as a probabilistic

model . Deisenroth et al. [2020] This acts as the output of the learning algorithm and

takes the form of a function f : X → Y , which attempts to predict y for arbitrary
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given x that is not in the training set. Put more formally, we can denote the learning

algorithm as a map M taking the form:

M :
⋃
n∈N

(X × Y )n → Y X . (1)

On the left hand side,
⋃

n∈N(X × Y )n, represents the unions of all possible combina-

tions of inputs X and labels Y in N data sets, where (X × Y )i represents a set of

training data with i elements. The right hand side, Y X , is known as the hypothesis

space F which contains the set of all possible predicting functions that take in initial

data and generate labels. Wolf [2020]

To construct the learning algorithm, there are some probabilistic assumptions that

must be made. One of which is that the pairs (xi, yi) are treated as values corre-

sponding to random variables (Xi, Yi). The variables themselves are independently

distributed according to a probability measure dP (x, y) ∈ X × Y , which is described

as a function defined on a set of events in a probability space, given that is satisfies

standard measure properties. Roussas [2014] The probability measure takes possible

labels and assignments them to a probability value.

The goal of the learning algorithm is to find an accurate hypothesis f with respect

to a chosen loss function L : X×Y → R, which measures how far off f(x) is from the

respective label y. The average loss is defined as risk and is given by the functional:

R[f ] :=

∫
X×Y

dP (x, y) L(y, f(x)), (2)

where the minimization of the risk produces a better hypothesis. The probability

measure dP is not a given, only the training data set S is, thus the learning algorithm

is tasked with minimizing the risk without having to evaluate R explicitly.

Before concluding this section with a brief overview of an example of risk minimiza-

tion, a general overview of the learning algorithm process is discussed. Training data

is supplied into the learning algorithm, where the inputs and labels are known. The

learning algorithm develops predictors which act as the model that takes in inputs

and outputs labels. The model is compared to test data and the risk is computed

based on how far off the model is. The algorithm then makes corrections based on

the risk and produces another model and the process is repeated through iterations

until an accurate model is obtained. Supervised learning means that the inputs and

labels are both known, whereas more general cases would employ neural networks

where the algorithm classifies both of these, only requiring a much larger amount of

data sets.

Finally, take a look at an example of risk minimization: empirical risk minimization

for linear functions. Although risk R is not computed directly, the average loss of a

model can be computed directly as follows:

ˆR[f ] :=
1

N

N∑
j=1

L(yj, f(xj)) (3)
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The method of minimizing R̂ is known as empirical risk minimization. If we take

X ×Y = RD×R and F = {f : X → Y | ∃z ∈ RD : f(x) = 〈z, x〉} as the set of linear

functions, then the minimizer of the empirical risk with a quadratic loss is given by:

ˆR[z] :=
1

N

N∑
j=1

(yj − 〈z, xj〉)2. (4)

Here, 〈z, xj〉 is the inner or scalar product between the two vectors z and xj. Wolf

[2020]

3. RAPIDPLAN ALGORITHM

RapidPlan is a knowledge based program (KBP) that computes DVH prediction

models to prescribe optimal dose distributions for a given patient with associated

structures and field geometry. Fogliata et al. [2019] The learning algorithm is ac-

cessed within the Eclipse treatment planning sytem (TPS), which uses dose prescrip-

tions from existing inputted treatment plans, along with patient-specific anatomy to

generate the precise models. The models predict DVH distributions for the OARs

and CTVs along with optimization objectives to better produce the estimated DVH

ranges. Tinoco et al. [2020] An example of DVH estimates an objectives can be seen

in Fig. 1.

Figure 1. DVH distribution plot of volume percentage as a function of dose in units of
Gy. Translucent regions represent DVH estimations computed by the model. Dotted lines
represent DVH objectives. Phillips [2020]

Now, the steps for model generation of DVH distributions is discussed. First the

algorithm requires a large set of existing patient training plans which each have a
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structure set and an absolute dose for the CTV. Each of the plans are then associated

to a collection of models whereby OARs, CTVs, and dose prescriptions can be defined.

Once the principal components are defined, the KBP algorithm parametrizes structure

sets and dose matrices, and defines dose-volume constraints on each structure. Next,

geometric and dosimetric data is extracted from a patient databse to begin training

the model. The training is based on principal component analysis methods. Fogliata

et al. [2014b]

Once the model has been trained and is ready to be applied to patient data, pa-

tient information such as the structure sets, prescription dose and field geometry are

inputed into the DVH estimation algorithm. After the DVH generation, automatic

objectives are created based on the model in order to optimize the desired dose distri-

bution. To optimize the current suggested plan, the algorithm calculates OAR volume

partitions and GED cumulative volume histograms. Then using stepwise regression,

coefficients are computed to create the most likely appropriate DVH, which can be

seen in Fig. 2. Phillips [2020]

Figure 2. DVH distribution plot of volume percentage as a function of dose in units of
Gy. Translucent regions represent DVH upper and lower bounds calculated for each OAR
partition. Dotted line within the bounds represents the most probable DVH. Phillips [2020]

Once the most likely DVH is computed, the model is ready to be validated by the

user before being applied to a patient plan.
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