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Abstract: An enticing goal in physics is to have a consistent model of our universe’s geometry through

its spacetime manifold. A suitable candidate is de Sitter space dS4, a vacuum solution of the Einstein

field equations, due to its positive curvature and that its an expanding spacetime. Frameworks such as

general relativity and quantum field theory are not sufficient to model the universe as it lacks consistency

at different energy scales (for example they lack IR/UV mixing). To preserve this consistency, we look at

dS4 as arising from compactifications from type II superstring theory, a supersymmetric field theory with

IR/UV mixing. There are however issues with the existence of vacua occurring with de Sitter isometries

after compactifying from a higher dimensional theory. These issues prevent non-singular compactifications

to dS4. In particular, we characterize the effect that massive Kaluza-Klein modes have on the theory by

compactifying our spacetime over S1. We then show how effective Wilsonian actions cannot be constructed

for expanding spacetimes, implying that a vacuum solution with de Sitter isometries cannot exist. In this

paper, we work on constructing quantum corrections to avoid these no-go theorems by replacing these

problematic vacua in dS4 with Glauber-Sudarshan states |σ⟩ over supersymmetric Minkowski space IR3,1.

These states (which are additionally coherent) expand and have the de Sitter isometries, thus are of interest

for a model candidate of our universe.
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1 Introduction

It is of great interest in theoretical physics to have a complete theory of our universe which is consistent

at different energy scales. It is often the case, however, that high energy theories do not directly affect the

features of low energy theories or vice versa; there is no mixing in the degrees of freedom of theories at

low energy scales (infrared) and high energy scales (ultraviolet), known as IR/UV mixing. Currently, an

example of this energy scale inconsistency which limits us towards the construction of a complete theory

is the incompatibility of quantum field theory (QFT) and gravity (as curvature of spacetime in general

relativity). Different candidates have been proposed to resolve this conflict of quantum gravity, each running

into a variety of inconsistencies. A minimal approach is to construct QFT in expanding curved spacetime

but it results in fields having time dependent mass which leads to issues with energy conservation and field

quantization. Another minimal approach is to perturbatively add gravity as an interacting term in the

theory’s action but this leads to a non-renormalizable interaction vertex, meaning observables nonphysically

diverge. Another approach is to limit the degrees of freedom of the theory by considering an effective

theory. The currently most popular effective theory for quantum gravity is loop quantum gravity but it is

constructed in such a way that uses generalized connections (tensor that connects different sub-regions of

the spacetime manifolds) which do not reproduce the affine connections used in general relativity. Finally,

another approach would be to construct a unified theory which has IR/UV mixing, a popular theory of which
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is string theory. Although string theory (and hence superstring theory) is self-consistent, meaning alternate

methods of computation leads to the same result, we haven’t been able to construct a model that reproduces

the required properties of nature. On the other hand, many of our theories which do reproduce properties

of nature, such as QFT or general relativity, reveal many flaws under closer inspection: factorial divergence

of loop diagrams or metric singularities from non-vanishing stress tensor components, etc. In this paper we

will make use of superstring theory (specifically type II theory in 9+1D) to construct a model of our current

universe, which has IR/UV mixing (and hence consistency at different energy scales) and does not run into

the same divergence issues with the other theories.

We live in a 3+1D universe/spacetime (3 spatial dimensions IR3 and 1 temporal dimension IR+) where

the curvature of the spacetime is very close to being flat. On the other hand, type II string theory is

consistent in 9+1 dimensions, i.e. nine spatial and one temporal direction. How then would we get our

universe through this higher dimensional theory? The way to recover a lower dimensional theory (such as a

3+1D theory) from a higher dimensional one is by the process of compactification: the extra six dimensions

form a compact internal space which we take to be small. This process, where the internal space is taken

to be a compact space, is similar to inverse stereographic projection in mathematics. The physics definition

also includes taking the small volume limit of the compact space. In our case for example we could start with

type II string theory, a type of string theory which is 10D, and compactify on a 6D (3 complex dimension)

complex surface/manifold to recover our 3+1D universe. Here lies the interest of this paper. We want a

consistent definition of compactifications from higher dimensional string theories (and their lower energy

limit supergravity actions) to field theories on our 3+1D spacetime. A candidate for the space we live

in is one which is positively curved and expanding: 4D de Sitter space dS4. Our goal is to resolve the

problems that exist when trying to compactify from string theory to dS4 such that it can be a candidate for

modelling our current universe. In the following we will provide a slightly more technical discussion of our

compactification procedure.

As we are dealing with higher dimensional theories, it is often the case that we work with surfaces

or manifolds that are embedded in higher dimensional spaces. Such objects are called hypersurfaces, and

the ambient higher dimensional space (that is equipped with a metric) induces a metric on the embedded

hypersurface. The induction of a metric is given by the pullback map ϕ∗ whereby the metric of the ambient

space is pulled back onto the embedded manifold. To outline the construction of a universe model, consider

an N -dimensional spacetime manifold ΣN describing the topology of a universe which is embedded in a

higher dimensional universe. The higher dimensional universe has an associated spacetime manifold ΣM of

dimension M . We can write the metric induced in the lower dimensional space as a pullback of the higher

dimensional metric as [1]:

ϕ∗(gAB) = gAB
∂xA

∂yµ
∂xB

∂yν
= gµν , (1)

where (gAB , gµν) are the metrics of (ΣM ,ΣN ) each with local coordinates (xA,yµ), respectively. The

index ranges for the different spaces are (A,B) = 0, . . . ,M and (µ, ν) = 0, . . . N , for N < M . Being that

our current universe is expanding, we are interested in spacetimes with some form of scaling. We can use

the previous equation above to write a general form of the expanding metric gµν on ΣN , represented in the

differential form basis living on fibres of the cotangent bundle T ∗ΣN :
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ds2 = gµνdx
µ ⊗ dxν = F (t, x)

N−1∑
j=0

gjjdx
j ⊗ dxj +G(t, x)

N(N−1)∑
k ̸=s

gksdx
k ⊗ dxs. (2)

The first equality shows we are writing the metric in the differential two-form basis {dxµ ⊗ dxν} over

the fibres of T ∗ΣN . The first term in the second equality represents the diagonal terms of the metric,

while the second term arises from non-diagonal components. The non-diagonal components have non-

trivial mixing of the degrees of freedom (DOFs) of the spatial & temporal components†. The sums have

been written explicitly contrary to usual convention to emphasize the ranges of the sum. Furthermore,

the spacetime functions F (t, x) and G(t, x) scale the spacetime much like the scale factor a(t) does in a

Friedmann–Robertson–Walker universe, except now it can have some positional dependence. In models of

our universe the metric is diagonal without mixing of DOFs and there is no scaling on the temporal piece of

the diagonal components. This simplifies the metric representation to:

ds2 = −dt2 + F (t, x)

N−1∑
j=1

gjjdx
j ⊗ dxj . (3)

The information of the expansion of spacetime is thus given purely by the scaling function F (t, x), and

the nature for the expansion is attributed with the dark or vacuum energy of the theory. In quantum

field theory, this vacuum energy is precisely the energy of an unexcited background field, computed via an

expectation value with the interacting vacuum state |Ω⟩ living in the Hilbert space H(ΣN ) (these are section

of a Hilbert bundle). The vacuum state energy can be analogously thought as the energy of the ground state

of a quantum harmonic oscillator (where in QFT the oscillator modes are instead modes of fields defined

over the spacetime manifold). This vacuum energy has a direct correlation with cosmological constant Λ

appearing in the Einstein field equations:

Rµν − 1

2
gµνR = Λgµν + κTµν , Λ > 0. (4)

The above is a non-linear coupled partial differential equation for the metric of the spacetime, whereby

one of its vacuum/homogeneous solutions (where Tµν = 0) is de Sitter space dS4. This vacuum solution is not

to be confused with the interacting vacuums |Ω⟩ in QFT which when excited give rise to interacting fields.

Explicitly, dS4 is a vacuum solution of the Einstein field equations, where interacting vacua |Ω⟩ ∈ H(dS4) on

dS4 have the isometries of the space, which we call the de Sitter isometries. Even with these isometries, we

have yet to construct a consistent description of the vacuum energy relating to Λ as seen in nature. To study

the origin of this expansion, and thus the origin of our universe, we look at studying the vacuum energy

in various models. Although the universe we live in appears to have a vanishing Riemannian curvature,

this is not the case at large scales, and therefore it is informative to study the vacuum energy in a class of

expanding, curved geometries whereby fundamental physics might emerge.

For curved geometries such as AdSn × Sn where AdSn is the n-dimensional anti-de Sitter space and Sn

is the n-sphere, the cosmological constant is negative Λ < 0. This occurs in theories of classical supergravity

(the study of general relativity over superspaces), however the negative cosmological constant does not lead

to an expanding universe. We thus consider geometries admitting Λ > 0 such as de Sitter space dSn, which

†An example of DOFs mixing is in the Kerr metric that has a component of the form dt⊗dx. This gives rise to non-vanishing

angular momentum and as a result the black hole which it models rotates.
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give rise to expansion. The geometries with a positive cosmological constant, however, are subject to certain

classical conditions [2] whereby the components of the metric on the space after compactification (or the

warp factor for warped geometries) diverge. This means that there cannot exist consistent vacuum solutions

(de Sitter space) from compactifications of string theory. This leads us to the so-called swampland scenario:

a model that cannot be realized as a consistent theory of gravity.

Now, if we look at the vacuum energy of supersymmetric Minkowski space IR3,1 (a supersymmetric

extension of Minkowski space which we use to preserve supersymmetry), because there is no expansion or

curvature then the vacuum energy is trivially 0. On the other hand, the vacuum energy of dS4 must be

greater than 0 to lead to Λ > 0 for an expanding universe, but the interacting vacua |Ω⟩ are constrained by the

lack of classical non-singular compactifications to dS4. To avoid these issues, we instead work with excited

a Glauber-Sudarshan (GS) states |σ⟩ [3] (until covered in section 2.3 can be thought of general coherent

states |α⟩) over supersymmetric Minkowski space IR3,1, where the vacuum energy of these computed using

these states gives a positive quantity and thus a positive cosmological constant. Although super Minkowski

space is flat and does not expand, these GS states are expanding and have the required de Sitter isometries,

meaning that the combination of the GS states and Minkowski space are still a relevant candidate to model

our universe. It is possible to find these states once quantum corrections to the metric are added to the

theory for a consistent model. We wish to characterize the origin of the vacuum energy of these states from

compactifications of string theory to dS4, and hence characterize the origin of the expansion of the universe,

via the construction of these quantum corrections. An in depth review of the framework used in the paper

appears in the appendix.

2 Analysis of de Sitter vacua

We now present the conflict of interest in more explicit detail to precede the analysis. Recall the interest

of this paper, which is to describe quantum corrections to the metric ⟨σ|ĝµν |σ⟩ (where ĝµν is the metric

operator) that must be added to make a compactification of string theory (type II superstring theory for

spectrum of fields we are interested in) to de Sitter space dS4 consistent. In particular, we want to construct

the Glauber-Sudarshan states |σ⟩ over supersymmetric Minkowski space IR3,1, that have de Sitter isometries

and positive vacuum energy. There are multiple ways to consider such conditions on possible compactification

solutions.

One approach is to constrict the metric of the different spaces. There exists Hawking-Penrose singularity

theorems [4] whereby energy sources in a spacetime will create singularities in the form of diverging metric

components, and this cannot be avoided (and thus a singularity is created after compactification with the

inclusion of these energy sources). One of the reasons for this inevitability is the requirement of geodesic

completeness of the Lorentzian manifold, known as a geodesic manifold. This states that exponential map

(the same one used to generate Lie group elements in group theory used in quantum mechanics) must be

defined on the entire tangent space of the manifold. An example of a manifold without geodesic completion

is the punctured plane IR2 \{0} whereby geodesics going through the origin cannot be defined on all of IR. It

has been shown that there are conditions on this singularity by which compactifications cannot give rise to

dS4. Such include a strong criteria where the g00 component of the metric cannot diverge when approaching

the spacetime singularity, and a weak criteria where g00 should be bounded above [2]. For regular geometries

they find that the sign of the cosmological constant Λ is determined by the sign of the curvature scalar R(M)
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of the spacetime manifold M , and thus by the contracted Einstein field equations, the trace of the stress

tensors T . It is shown that all contributions to the stress tensor are positive and thus contribute to the

wrong cosmological constant sign. This follows from a difference of the trace of the stress tensors in the

external and internal spaces, respectively, which results in the incorrect negative sign for T . Moreover, for

warped geometries†, the only warp factor (a scaling factor of the external space which is dependent on the

internal space) solution Ω which is found is one that vanishes near the spacetime singularity: Ω → 0. This

means that at the singularity our external spacetime would vanish and not admit our universe. Thus they

conclude there are no non-singular compactifications from string theory to de Sitter space dS4 [2]. More

work has been done in this direction where it was shown that the assumption of the previous work (which

was assuming the potential of the scalar field is non-positive V ≤ 0) does not lead to an external space with

positive curvature such as dS4 [3]. Moreover, they further this analysis by including fluxes coupled to gravity,

(anti) Dp-branes and (anti) orientifold planes Op. It is found that the inclusion of such objects, even in

warped geometries, does not give rise to a positively curved universe and quantum corrections are required

in the form of higher derivative gravity terms as well as non-perturbative corrections in string theory.

An alternative approach would be to have a metric independent argument using different spacetime

energy conditions. The energy conditions that exist for spacetimes include: the null energy condition where

parallel lightrays in a curved spacetime cannot diverge, the strong energy condition where gravity is non-

repulsive, the weak energy condition where a local observer must see a non-negative energy density and

non-repulsive gravity, and finally the dominant energy condition where a local observer sees a causal flow of

non-negative energy and non-repulsive gravity [5]. Work has been done to ascertain whether these energy

(consistency) conditions in a higher dimensional theory imply the inheritance of the same energy conditions in

a lower dimensional theory after compactification. It is shown that the inclusion of fields (and hence fluxes),

branes, and orientifold planes together satisfy the energy conditions, and that the higher dimensional energy

conditions indeed imply the inheritance of those conditions in the lower dimensional theory [5]. This work

however did not include perturbative and non-perturbative corrections arising from string theory which can

change the consistency of these energy conditions. This changes the criteria in which compactifications to

dS4 are allowed.

In either case we wish to construct the conditions by which we can have an expanding geometry with

positive curvature after compactifications of string theory, with the inclusion of missing quantum corrections

on the metric. This would allow us to construct the Glauber-Sudarshan states and see the conditions on

when the sign of the cosmological constant is positive. First we make sure that the massive spectrum of states

that occur after compactification have vanishing contributions to the metric. Should they be non-vanishing,

the states would curve the spacetime which alters the metric and thus does not give us a de Sitter spacetime.

Then we show that in expanding spacetimes, we cannot define an effective Wilsonian action (meaning we

cannot define a vacuum in the theory). Then we look at quantum corrections to circumvent the constricting

conditions of dS4 compactifications by considering the interacting vacua as excited Glauber-Sudarshan states

|σ⟩ over a flat supersymmetric Minkowski space background IR3,1.

†In warped geometries where the metric is split into a piece for the internal space, and another piece for the external space

(our universe), the external piece has a scaling factor which depends on the coordinates of the internal space. This is known as

the warp factor for a warped product metric.
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2.1 Kaluza-Klein state spectrum

Although the fields we have seen thus far are massless and Abelian, there does exist a massive sector of

the theory consisting of different sets of massive fields. These are relevant to our interests as the presence of

massive objects in our spacetime can alter the metric and alter the construction of the de Sitter spacetime

dS4. One such set of massive fields arise from compactification which are known as Kaluza-Klein states,

which we must study if we want to recover a consistent theory for our 3+1 D spacetime. We must make sure

these massive DOFs don’t change the physics of our theory.

To see if this is the case, consider an ambient 4+1 dimensional spacetime of form Σ′ = Σ4 × S1 =

(IR3 × IR+) × S1, where the first term Σ4 is a 4 dimensional Lorentzian manifold defining the 3+1 dimen-

sional spacetime we live in, and S1 is the unit circle which we will compactify over. We define tensor field

components over Σ′ to be (M,N) = 0, . . . , 4 with coordinates z = (x0, . . . , x4). We can additionally define

components for each separate space as (µ, ν) = 0, . . . , 3 for Σ4 with coordinates x = (x0, . . . , x3) and i = 4

for S1 with coordinates y = x4. The presence of scalar and gauge fields defined over S1 adds an extra term

in the metric as the following:

ds2 = gµνdx
µ ⊗ dxν + e2φ(dy +Aµdx

µ)2 (5)

Here gµν is the metric over the external space, dxµ is the basis for cotangent spaces T ∗
p

Σ4 ∀p ∈ Σ4 (fibres

of cotangent bundle T ∗Σ4), φ is a scalar field defined over Σ′, and Aµ is the gauge field defined over Σ4. We

want to study the dynamics of a scalar field over the product space, so we define it as the tensor product of

the fields φ1(x) ∈ Σ4 and φ2(y) ∈ S1 as:

φ(x, y) = φ1(x) ⊗ φ2(y). (6)

Although the above are scalars and thus the tensor product is simply multiplication, we keep the notation

to emphasize that the fields live in different spaces. Recall that in QFT we write the scalar field as a classical

solitonic background φ0 ∈ C, and we quantize fluctuations δφ on that background to give us φ = φ0 + δφ.

It is standard to make the background field vanish and only look at the fluctuations, however we will only

look at the background terms, the reason for which will be evident soon. For a φ4 interacting scalar field

theory, we have the usual action and the associated equations of motion of φ:

S =

ˆ
d4x dy

[
∂Mφ∂Mφ−m2φ2 − λφ4

]
0 =

δS

δφ
= (□ +m2)φ+ λφ3,

(7)

where □ = gMN∂M∂N is the d’Alembertian operator, λ ≪ 1 is a dimensionless coupling constant, and

the potential λφ4 is a perturbative interaction term which maybe be dropped in the EOM. This gives us

the usual Klein-Gordon equation (KG) which describes the dynamics of the scalar field in the ambient space

which it lives in. Now, due to the nature of our space (a product space), the metric will take a different

form and will affect the differential operator in the EOM. Analogous to how we decompose the metric over a

product space in the appendix, we can construct a metric which has a classical background component and

a fluctuating component:
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g
MN

= g
(b)
MN + δg

(f)
MN

= g(b)
µν

(x) ⊕ g(b)
ii

(y) ⊕ g(b)
µi

(x, y) + gµν(x) ⊗ φ2(y) ⊕Aµ(x) ⊗Ai(y) ⊕ φ1(x) ⊗ gii(y).
(8)

Here gab are metrics with legs (indices) in different parts of the product space, φa(xa) are scalar fields,

and Aa are gauge fields, for some arbitrary indices (a, b). The first 3 terms are the classical background

pieces, while the second set of more complex terms are the fluctuating pieces (where the two objects in each

tensor products have the appropriate amount of indices to match up with the metric gMN ). The last term

in the background pieces gµi(x, y) is a metric term with DOFs mixing from both spaces, however as we are

not dealing with a fibration but a product space, this term vanishes. Moreover, we shall drop the fluctuating

terms as the presence fields within it would turn the EOM into a coupled set of non-linear PDEs, and it

suffices to look at the behaviour of the field over a background to see the massive modes don’t affect the

metric. With this we can decompose the d’Alembertian operator defined over the two spaces:

□ = gMN∂M∂N = gµν∂µ∂ν ⊗ 1l ⊕ 1l ⊗ gii∂i∂i = □x ⊗ 1l + 1l ⊗□y. (9)

The 1l are the identity operators in that piece of the product space (either in the internal or external

space), and ∂a are the usual partial derivatives which form a basis for fibres of the tangent bundle TΣ′.

Although S1 has no temporal coordinate, we write ∇2
y

= ∇2
y
− 0(∂2

t
) ≡ □y for convenience. With the metric

and differential operator appropriately decomposed, we can use this to compute the dynamics of the scalar

field through its EOM:

0 =(□ +m2)φ = (□x ⊗ 1l + 1l ⊗□y +m2)φ1(x) ⊗ φ2(y)

= □xφ1(x) ⊗ φ2(y) + φ1(x) ⊗□yφ2(y) +m2φ1(x) ⊗ φ2(y).
(10)

With a few steps of algebra we can get the equation of motion in the following form:

□xφ1(x) ⊗ 1l + φ1(x) ⊗
[
m2 +

□yφ2(y)

φ2(y)

]
= 0. (11)

Since the scalar field φ1 in φ = φ1 ⊗ φ2 resides in the massless sector of type II string theory (type II

supergravity which we elaborate in the appendix), we take m2 → 0, where m is the mass of the scalar field

φ1. Now, although we take the scalar field φ1 to be massless, the EOM above with m = 0 looks like the

KG equation for φ1 with a mass term given by □yφ2(y)/φ2(y). We define this mass term for φ1 as m̄2, and

equating the mass term to its definition gives us a harmonic PDE for φ2:

□yφ2(y) = m̄2φ2(y). (12)

This tells us that S1 admits a harmonic 0-form φ2, which is normalizable as the space is compact. Using

the periodic boundary condition on the harmonic scalar field given by φ2(y + 2πR) = φ2(y), where R is the

radius of S1, we can solve the differential equation to get:

φ2(y) = c1e
iky + c2e

−iky, (13)

where cj ∈ C are complex coefficients, k ≡ m̄ = n/R is the mass of the Kaluza-Klein states φ2(y),

and n ∈ Z. This harmonic scalar field gives us an infinite tower of massive modes with mass m̄ which
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depend on the parameter n. In principle this would affect the energy stress tensor Tµν in the Einstein field

equations and thus affect the metric of dS4. In our case, does it actually affect the metric? Consider the

2-point function G(2)(p) with total incoming 4-momenta p, for the interaction of two scalar fields via a φ4

interaction. Looking at the tree level diagrams, the virtual particle mediating the interaction will have a

propagator for φ2(y) of the form D(p; m̄) ∝ 1/(p2 + m̄2) ≃ 1/m̄2 = R2/n2 (where m̄2 ≫ p2). This term

becomes very small as R→ 0 as we compactify over S1 and thus the contribution vanishes. This also follows

for loop diagrams with the same contribution vanishing under the compactification. Thus we see that the

infinite tower of modes generated by the harmonic scalar field φ2(y) over the compactified manifold S1 don’t

get produced and don’t affect the geometry of the space at low energies.

An alternate way to get the above is looking at the action under the presence of Fourier modes living

in S1. Due to the identification of points on S1 via the equivalence relation S1 : y ∼ y + 2πR and thus

φ(y) ∼ φ(y + 2πR), we can decompose the scalar fields in the following way:

φ(x, y) =

∞∑
n=−∞

φn(x)einy/R, (14)

where the φn are the eigenstate component weights of the expansion. Plugging this in the usual action

for a massless scalar field over the two spaces results in:

S =

ˆ
d4xdy ∂Mφ∂

Mφ =

ˆ
d4xdy

[
∂µφ∂

µφ+ (∂iφ)2
]

= 2πR

∞∑
n=−∞

ˆ
d4x

[
∂µφn∂

µφn +
n2

R2
|φ|2

]
,

(15)

and thus we see the contribution from the scalar fields living on S1 gives rise to a mass term with

m2 = n2/R2. This mass term of course vanishes under the compactification of S1.

Now, we have seen that a compact space (in our case S1) admits a harmonic 0-form φ2(y). It turns

out to be true for the more general case where compact spaces always admit normalizable harmonic forms

{Ω(n)
µ...ν

}, where n is the tensor rank of the form. These harmonic forms satisfy (dd† + d†d)Ω(n) = 0 (where

d† = (−1)n(4−n+1) ⋆ d⋆ and ⋆ is the Hodge star operator), and are normalized according to their scalar

product ⟨Ω,Ω⟩ ∝
´

Ω ∧ ⋆Ω, which is integrated over the volume of the internal space. Being that the space

is compact, the normalization is finite. The requirement of the internal space to be compact, among many

other reasons, is to keep the gravitational Newton constant G finite. These harmonic forms in the internal

space are exactly the ones that are attached to the forms in the external space via tensor products. As an

example, consider the decomposition of a rank-3 (tensor) form over a product space IR3,1 ×Σ6 (where Σ6 is

compact):

CMNP (x, y) = φ⊗ Ω(3)
mnp

⊕ Aµ ⊗ Ω(2)
mn

⊕ Bµν ⊗ Ω(1)
m

⊕ Cµνρ ⊗ Ω(0). (16)

Here {ϕ,Aµ, Bµν , Cµνρ} are the forms living in the external space IR3,1, while {Ω(n)
µ...ν

} are the harmonic

forms living on the compact internal space Σ6. This exercise also tells us how many forms (or their field

duals) can be defined over the manifold in question. For example, we can look at the topology of the manifold

by looking at the Betti numbers bp = dimHp, where bp are the dimensions of the the cohomology groups

9



Hp on the manifold Σ′.†

For S1 we have the following numbers:

b0 = 1, b1 = 1, b 2≤j∈Z = 0, (17)

where b0 tells us the amount of 0-cycles (and thus 0-forms)‡ over S1 which in our case is the single

harmonic form φ2(y), while b1 tells us how many 1-cycles (and thus 1-forms) are defined on S1. From

knowing the amount of harmonic forms defined on the manifold, we can count how many fields should be

defined on it as well. Consider an antisymmetric 2 tensor defined over the product space Σ′:

BMN (x, y) = Bµν ⊗ φ2(y) ⊕ . . . . (18)

Here we can see how many antisymmetric rank-2 tensors Bµν are on the surface by looking how many

0-forms φ2(y) we have, which in the case for S1 by b0 = 1, is 1.

2.2 Incompatibility of effective Wilsonian actions

In this section we show that we cannot write down an effective Wilsonian action in an accelerating

spacetime background due the temporal dependence of the frequencies. This means we cannot integrate

out higher energy modes of fields and thus cannot define a theory at a fixed energy scale. This shows that

vacuum solutions of the Einstein field equation (de Sitter space being one of them) cannot consistently occur

when the solutions are expanding spacetimes. We review this for bosonic fields by following the work done

in [7], and then present our results for fermionic fields in an expanding 4-dimensional spacetime manifold.

2.2.1 Scalar fields

Quantizing a bosonic scalar field ϕ on some static flat geometry, such as Minkowski space IR3,1, we get

the usual Fourier expansion for the quantized scalar field in terms of the creation and annihilation operators

(a†
k
, ak):

ϕ(t, x) =

ˆ
d̃k

(
ake

ikx + a†
k
e−ikx

)
, (19)

where d̃k ≡ d3k/((2π)3
√

2ωk) is the Lorentz invariant measure, ω2
k

= k2 + m2 is the frequency of the

excitations, and kx = kαxα = ωt− k⃗ · x⃗ is the sum over the components of the momentum kα and position

xα of the field excitation.

For an expanding, curved geometry, we first switch to conformal time η = η(t) such that dη(t) = dt/a(t),

which takes into account the expansion of the universe through the scaling factor a(η). We use this to define

an auxiliary scalar field φ ≡ a(η)ϕ, which will be our description of scalar fields on the expanding curved

geometry. It turns out that these auxiliary fields defined on this spacetime, given a time η, have a similar

Fourier mode expansion [7]:

†This tells us how many linearly independent harmonic p-forms exist over Σ′, as well as the number of boundaries of

p-dimensional submanifolds Mp, given by ∂Mp ∈ Σ′, which themselves do not have a boundary. These boundaries are known

as p-cycles[6].
‡We can relate the amount of n-cycles over the manifold and the number of n-forms via the homology groups Hi. See

Candelas’ lectures on complex manifolds for an in depth review.
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φ(η, x) =

ˆ
dk

(
akv

∗
k
(η)eikx + a†

k
vk(η)e−ikx

)
. (20)

Here dk ≡ d3k/((2π)3/2
√

2) is another normalized Lorentz invariant measure, and vk(η) are Fourier mode

functions satisfying:

v′′
k

+ ω2
k
vk = 0, (21)

for ω2
k

= k2 +m2
eff

= k2 +m2a2 − a′′/a. The effective mass term in the frequency comes from the scalar

field living on an expanding spacetime, which can be imaginary for fields interacting with the gravitational

background. Furthermore, it is often the case that we use a different coordinate system that maximizes

the amount of variables that are cyclic, (and for each cyclic coordinate comes a conserved charge) while

preserving the forms of the equations of motion. In our case, we change Hilbert space bases generated by

the creation and annihilation operators which is done through a canonical transformation on the creation

and annihilation operators, known as the Bogoliubov transformations [8]. This transformation defines an

isomorphism between canonical (anti)commutation relation algebra. When performing such a transformation

gives us yet another solution to the Fourier mode (Eq. 20) as:

uk(η) = αkvk(η) + β∗
k
v∗
k
(η). (22)

Here (αk, βk) are complex coefficients that depend on the Wronskian of (uk, vk), which transform our

creation and annihilation operators as:

b†
k

= α∗
k
a†
k
− β∗

k
a−k, bk = αkak − βka

†
−k
. (23)

Using these operators (a†
k
, b†

k
), we can generate a basis for the Hilbert space of our spacetime. Note that

the relationship between the particles created by a†
k

and the particles created by b†
k
, is that their respective

vacua contains the other particles. So the vacuum with respect to bk contains particles particles created by

a†
k
, and vise versa. Where in lies the problem with such vacua? The effective mass term in the frequencies of

excitation meff depends on time, and thus the annihilation operators which annihilate the vacua at one time

η0 will not annihilate it at another η1. This means we cannot have a consistent description of the vacuum.

Moreover, the time dependence of the frequencies ωk creates an ambiguity in what modes are considered

high and low energy. We might try to integrate out the high energy modes via Wilsonian integration to have

an effective action of the theory, but the kept low energy modes can become high energy modes at some later

time. This means we cannot describe the field dynamics via an effective action, nor can we define a vacuum

state which will allow us to compute the vacuum energy (again, related to the cosmological constant Λ).

Now, we see that we cannot define scalar field theory on an expanding curved spacetime, meaning we

cannot define a consistent vacuum with the desired de Sitter isometries. It is noted that a popular candidate

for a vacuum with these isometries is the Bunch-Davies vacuum, which allows us to characterize the behaviour

of φ around the event horizon of de Sitter space. Although containing the required isometries, this vacuum

assumes that there was a period of exponential expansion during inflation whereby quantum fluctuations are

taken to be negligible, which isn’t necessarily the case. This, among the other problems associated with de

Sitter compactifications mentioned before, leads us to instead consider product coherent states |σ⟩, known

as Glauber-Sudarshan states, over a flat supersymmetric Minkowski background IR3,1. This is covered in the

next subsection, after moving on to the analogous problems with spinors on a expanding curved spacetime.
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2.2.2 Spinor fields

We now move onto looking at how fermionic spinor fields behave over a curved, expanding spacetime.

We see that it doesn’t allow us to define a vacuum (and hence the notion of a particle) in the theory or define

an effective Wilsonian action, where we have integrated out the high energy fields that cause observables to

diverge.

First, we must consider the space we are working with; one which is curved and expands to model our

universe spacetime. For curved spaces with complicated geometries, it is useful to work with fibre bundles

that generalize the notion of produce spaces between two manifolds. In the case of a bundle, the definition of

the product between elements of the two manifolds can change at different points and these bundles allows

us to define more general fields (of equal footing) in unified theories. The set of two manifolds is composed of

a base space and a projected space, where the projected space space tells you how to select information of the

base space. A useful property of fibre bundles is that locally the space looks like a usual product space which

allows us to work in a locally flat spacetime (through defining a local trivialization, making use of locally

flat charts of IRn). This non-trivial product of two manifolds represents a fibration, a more general fibre

bundle that doesn’t require compact and smooth manifolds.† These manifolds are related by a projective

mapping π which acts on the elements of the base space, known as fibres. One for example could consider

a spacetime bundle, where the base space is IR3 and the projected space is IR1 which represents a temporal

dimension. Furthermore, different fibre bundles are associated with one another if we can define a morphism

between them such that we can construct one bundle from the other. One bundle we can have associated

to the spacetime bundle is a vector bundle where the fibres are vector spaces, over which fields (and hence

particles) are defined on. In our case of type II superstring theory that is defined in 9+1D, then we have the

spacetime split up as a fibration where the base (external) space is our 3+1 Lorentzian spacetime L4, and

the other (internal) space on which L4 is fibred over is a 6D compact space M6 over which we compactify

over to get the de Sitter vacua (and hence de Sitter space).

Now, there are a few conditions which must be met to study spinors (elements of complex vector spaces

which describe particles spin) on curved, expanding spacetimes. When we looked at the work on scalar fields

done in [7], we had a vector bundle associated with our spacetime bundle over which we can define the fields

in our theory. Now, as we want to study spinors over our spacetime, we require an associated complex vector

bundle, known as a spinor bundle. Here we define spinors using the spin representation of the Lorentz group

as sections of the spinor bundle. Sections are the union of different fibre pieces at different projected space

points. Being that it is a curved space, we require a connection under which we can study how the derivative

of fields transform at different parts of the space. This is given by the covariant derivative, that acts on

these spinors under the representation:

Dµ = ∂µ +
1

4
ωab
µ
γab. (24)

Here ∂µ is the usual spacetime derivative, ωab
µ

is the spin connection, γab = γ[aγb] is the anti-symmetrization

of γ matrices, and together this tells us how the spinor field changes on the space. Furthermore, much like

†One for example could think about the product space between the unit circle S1 and the line IR1, which traces out a

cylinder S1 × IR1. We can have instead have the fibration S1 ⋊ IR1 such that at each point on IR1, S1 shrinks and at a certain

point has trivial size. Then after that point it can increase to grow back to the original size. This would look like a cylinder

where the center is warped to have zero size in the middle along IR1.
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how it is useful to work in a locally flat patch of a curved manifold, it is useful to work on a locally flat

inertial frame of the curved spacetime. This is given by the frame bundle, a principal bundle (a fibre bundle

that has a group action on a fibre space) that is associated with our spinor bundle. The use of the frame

bundle is that it allows us to attach a local frame / coordinate basis to each fibre in the spinor bundle. This

allows us to describe the space locally with flat, expanding coordinates given by tetrad coordinates eµ
a

which

are sections of the frame bundle that have a Lorentz index µ and a basis index a. Tetrads are useful because

they allow us to write our metric as locally related to the flat Minkowksi metric, bypassing the need for local

trivializations (to work in flat space). This is given by the pullback map ϕ∗(gµν) = eν
b
eµ
a
gµν = ηab. We can

also write an explicit form for the spin connection using tetrads as: ωab
µ

= 2eν[a∂[µeν]
b] − eν[aeb]σeµc∂νe

c
σ

[9].

One particular use of tetrads for spinors is that we can define a notion of γ matrices in curved spacetime as:

Γµ(x) = eµ
a
(x)γa, (25)

where γa are the usually spatially constant γ matrices, and eµ
a

are the local tetrad coordinates. Together

this gives us a notion of spatially dependent gamma matrices. We also note that the form of the covariant

derivative with the spin connection comes from the fact that the tetrad coordinates must be covariantly

constant : Dµe
a
ν

= 0 [9]. The dynamics of the spinors ψ in a curved, expanding spacetime, together with the

gamma matrices and covariant derivatives, is thus given by the following action:

S =

ˆ
d4x

√
−g

[
ψ̄ΓµDµψ −mψ̄ψ

]
. (26)

Here
√
−g is the root determinant of the metric (where the minus sign keeps the determinant real) that

keeps the measure Lorentz invariant, ψ are the spinor fields, ψ̄ = ψ†γ0 are conjugate spinor fields, Γµ are

the γ matrices in curved spacetime, Dµ is the covariant derivative associated with the spin connection ωab
µ

,

and m is the mass of the spinor fields. Much like how there cannot be a vacuum defined for scalar fields on

a flat, expanding spacetime, it is sufficient to show that we can’t describe spinors on a curved, expanding

spacetime by studying how it fails in a flat, expanding spacetime. This leads us to not be able to have an

effective Wilsonian action and the description of a vacuum state on curved, expanding spacetimes. To see

how the dynamics of these spinor fields change, we need to see how the expanding metric contributes to the

action on this flat space. Consider a metric for an expanding flat universe, given by an FRW metric:

ds2 = −dt2 + a2(t)δijdx
i ⊗ dxj . (27)

Here a(t) is the scale factor that determines how the universe expands, δij is the flat metric for the spatial

component of the space, and {dxi} is the differential form basis of the cotangent space (forming the cotangent

bundle of the spacetime). Although we make use of tetrads for describing γ matrices on curved spacetime,

we don’t need to make use of the pullback map to have a local description of Minkowski space. This is

because the FRW metric is already conformally related to the Minkowski metric under the replacement of

time t to conformal time η (through dt = a(η)dη), which gives us the metric:

ds2 = a2(η)(−dη2 + δijdx
i ⊗ dxj). (28)

This allows us to use the replacement gµν = a−2ηµν . From the above we can compute the root determi-

nant contribution
√
−g to the action (where g = det(gµν)) as

√
−g = a4. Moreover, we can expand out the

index contraction of the covariant derivatives as:

13



ΓµDµ = a−2ηµνΓµDν = a−2(−Γ0D0 + δijΓiDj) = a−2(ΓiDi − Γ0D0). (29)

Since the space is flat the spin connection ωab
µ

vanishes and so the covariant derivatives Dµ reduce to

normal spacetime derivatives ∂µ. This means that the above covariant derivatives act on the spinor fields as

D0ψ = ∂0ψ ≡ ψ̇ and Diψ = ∂iψ ≡ ψ′
i
. Here ψ′

i
is written to mimick usual notation for spatial derivatives

such as f ′(x) = ∂xf and is not to be confused with the ψν vector-spinors (also known as gravitinos since

their are the superpartner to gravitons). With all of the above the action becomes (although we are in flat

space, we keep the vanishing spin connection terms to emphasize the structure of the action when we split

spatial and temporal indices):

S =

ˆ
d4xa2

[
ψ̄
(

Γiψ′
i
− Γ0ψ̇

)
+

1

4
ψ̄
(
Γiωab

i
− Γ0ω

ab
0

)
γabψ −ma2ψ̄ψ

]
, (30)

where we have the Dirac conjugate for curved spacetime: ψ̄ = ψ†Γ0. Now, we introduce the notion

of an auxiliary field χ = a(η)ψ that will be our description of a spinor field on the expanding spacetime.

Taking spatial and temporal derivatives of χ and relating it to the original spinor field gives us the following

relations:

ψ̇ =
χ̇

a
− ȧ

a2
χ, ψ′

i
=
χ′
i

a
−
a′
i

a2
χ. (31)

Plugging the expressions for (ψ, ψ̇, ψ′
i
) in the action and after some algebraic manipulations we are left

with:

S =

ˆ
d4x

[
χ̄
(
Γiχ′

i
− Γ0χ̇

)
+

1

4

(
Γiωab

i
− Γ0ω

ab
0

)
γabχ−ma2χ̄χ+

1

a
χ̄
(
a′
i
Γi + ȧΓ0

)
χ
]

(32)

When comparing Eqs. 31 and 29, we see that the action has developed an extra piece in the form
1
a
χ̄
(
a′
i
Γi + ȧΓ0

)
χ. Note, since a = a(η) is not a function of the spatial component of the spacetime then

a′
i

= 0, and the extra piece is just ȧ
a
χ̄Γ0χ, and expanding Γ0 = e0aγ

a gives us ȧ
a
χ̄e0aγ

aχ.

What exactly does this term represent? If we use the standard representations for the γ-matrices and

tetrad coordinates for an FRW universe then it gives us a quartic interaction vertex that is proportional to

− 1
a2 (χ̄σiχ)2, where and σi are the usual Pauli matrices. However, we are interested in what this term does

to the mass and frequency of the auxiliary spinors χ. First of all, this is not a mass term for the spinors.

While the mass term for spinor fields in a static, flat space have the form χ̄mχ = mχ̄χ, for expanding,

curved spacetimes the mass m is replaced by a spacetime dependent mass matrix M(x) to give the mass

term χ̄M(x)χ. Here the spacetime dependence cannot explicitly come from the coordinates {eµ
a
} which is

exactly what we have. Another way to see that this is not a mass term is to remark that the mass term

χ̄mχ has only one factor of a γ-matrix (hidden in χ̄), whereas ȧ
a
χ̄e0aγ

aχ has two factors and thus it can

never represent a mass term for the spinors. Second, this term however does affect the equations of motion.

Varying the action functional with respect to the fields (χ, χ̄, eµ
a
) give the following equations of motion:

δS

δχ
= ∂µ (χ̄Γµ) + χ̄

(
ȧ

a
Γ0 −ma2

)
= 0

δS

δχ̄
= Γµ∂µχ+

(
ȧ

a
Γ0 −ma2

)
χ = 0
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δS

δeµ
a

= χ̄γa
(

1

a
∂µa+ ∂µχ

)
= 0

It is noted that when integrating by parts the variations of the form δ(∂µχ) = ∂µ(δχ) [10] we are able

to disregard the boundary terms as the FRW universe is asymptotically flat, and the fields (χ, χ̄) vanish

at infinity. In the equations of motion for (χ, χ̄), the extra terms that are proportional to ȧ
aΓ0 make it

so that the Fourier expansions of the EOM solutions develop time dependent frequencies ω(t). A time

dependent frequency is problematic as it doesn’t allow us to define a vacuum. Analogous to the case of

scalar fields, the expansion of χ into Fourier modes includes creation and annihilation operators (a†
k
, ak)

which are dependent on the frequency (and through the usual dispersion relation, the momentum) of the

spinor. This is problematic because time-dependent annihilation operators that annihilate the vacuum at

some time don’t necessarily annihilate the vacuum at another time. Since we can’t define the notion of

a vacuum, we can’t describe fields or particles in the expanding spacetime. This also prevents us from

defining an effective Wilsonian action where we integrate out high energy spinor modes to keep observables

finite, being that kept low energy modes can evolve in time to become high energy modes. The same issues

persists for more general p-form fields. Now, with these issues presented, instead of trying to construct a

vacuum solution to the Einstein field equations (de Sitter space) with a vacuum |Ω⟩, we consider excited

Glauber-Sudarshan states |σ⟩ over supersymmetric Minkowski space IR3,1 (the supersymmetric extension of

Minkowski space IR3,1, another vacuum solution of the Einstein field equations).

We have seen over an expanding space the bosonic fields have their mass altered while the fermionic

fields don’t. This means (as seen in the appendix) that the zero point energy no longer cancels out and

the individual frequencies diverge. This also means we would have to perturb the system about a diverging

vacuum energy. This explicitly breaks supersymmetry (additional contributions come from fluxes and branes)

and so the theory does not agree with our compactifications coming from type II (super)string theory. This

makes us instead consider Glauber-Sudarshan states |σ⟩ over a super Minkowski space IR3,1 which only breaks

supersymmetry spontaneously (meaning that the vacuum remains supersymmetric and the zero point energy

cancels).

2.3 Excited coherent states

Here we show we can compactify a type II string theory to a de Sitter universe. Recall that in previous

sections we have confirmed that the massive sector of string theory which arises from compactification

(the Kaluza-Klein states) have vanishing contributions to the metric and interaction diagrams under a

compactification of the internal space. Furthermore, we saw that fields on an expanding geometry lead

to explicit supersymmetry breaking, as well as the inability to define a vacuum, hence we cannot define

an effective Wilsonian action of the theory at a given energy scale. Here we look at circumventing these

problems (including the classical no-go theorems) by working over a flat super Minkowski space IR3,1 and

instead consider general coherent states, known as Glauber-Sudarshan states |σ⟩, which expand and share

the isometries of de Sitter space. Being that these states expand and have the same isometries as the de

Sitter space metric, they are of interest to replace the problematic interacting de Sitter vacua |Ω⟩. The

objective is to use states to compute quantum corrections to the metric operator of the form ⟨σ|ĝµν |σ⟩ to

allow for non singular de Sitter compactifications.

What does this all mean? Did we fall down the wrong rabbit hole just as Alice did in her adventures in
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Wonderland? Not quite so! To see this, first we must consider why we use coherent states at all in QFT and

what are the Glauber-Sudarshan states are. Additionally, we should understand the nature of the space we

work over (super Minkowski space) and what it mean for a state to share the isometries of a space? Once

we figure out those two pieces of information we move onto the metric quantum corrections.

For a free QFT with a single bosonic DOFs α1 ≡ α for example, the coherent state |α⟩ is a shift of

the free vacuum |α⟩ = D0(α) |0⟩ = exp
(
αa†

k
− α∗ak

)
|0⟩, where D0(α) is the unitary displacement operator,

α is a complex number, and (a†
k
, ak) are the usual creation and annihilation operators. These states are

useful since they preserve the coherence of the quantum system, where the coherence of the system refers

to the degree to which a quantum system exhibits wave-like behavior, such as interference and diffraction.

Furthermore, they are the excited quantum states that most closely resemble classic states, with minimal

uncertainty in position and momentum. This is useful to us as our theory must reproduce classical physics

in certain limits. In the case for an interacting QFT however, with multiple bosonic DOFs {αi} ≡ σ, we

instead have |σ⟩ = D(σ, t) |Ω⟩, the Glauber-Sudarshan (GS) states. Being that the vacuum which is excited

is now interacting, then there is an ambiguity of the displacement operator and it becomes non-unitary. For

the case of interacting vacua, the structure isn’t as trivial as the free vacua and so preserving unitarity of the

shift operator is difficult. It is however still possible to represent it in terms of the interacting Hamiltonian

over a temporal domain [11]:

D(σ, t) = lim
T→∞(1−iϵ)

D0(σ, t) exp

iMp

tˆ

−T

dt Hint

 . (33)

Here D0(σ, t) is a time dependent unitary displacement operator for the free vacuum, Hint is the inter-

acting Hamiltonian of the theory, Mp is the Planck mass, and the limit is slightly in the imaginary direction

(1 − iϵ) for the same reason it for propagators: to avoid poles in the complex phase that give rise to diver-

gences in observables. Now, for reasons which will be mentioned later, we must uplift to M-theory, an 11D

theory. 10D type IIA and IIB string theory can then be recovered by compactifying along (S1,T2 = S1×S1),

respectively. The multiplet for the fields in M-theory is given by: (gab, Cabc, ψa), where gab is the metric field,

Cabc is a 3-form axion field, and ψa is a Rarita–Schwinger fermion. The fields in the multiplet respectively

come with DOFs ({αab}, {βabc}, {γa}). In the bosonic sector with 128 DOFs, we have a graviton gab with

44 DOFs {αab}, and a three-form {Cabc} with 84 DOFs {βabc} [12]. The fermionic sector admits fermionic

condensates ψa which contribute 128 DOFs {γa}. Denoting all the DOFs as σ ≡ ({αi}, {βi}, {γi}), we write

the coherent product (Glauber-Sudarshan) state as [12]:

|σ⟩ ≡ D(σ, t) |Ω⟩ =
⊗
k

∑
fk

Ψσ(fk) |fk⟩

 , (34)

where the sum is over all the fields fk = ({gab(k)}, {Cabc(k)}, {ψa(k)}), the tensor product is over the

mode momenta k, Ψσ is the wave function of the GS state (corresponding to the DOFs of the field fk given

by σ) which can be thought of as a product of normalized Dirac delta functions, and |fk⟩ are eigenstates of

the momentum wavefunction of the GS states, in the configuration space. This is a general coherent state

over the full 256 DOFs, decomposed into the GS wavefunction delta modes. Now that we have a description

of the states we will use for the quantum corrections we move onto describing the isometries of the space.
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Now, since type II theory is a 9+1D theory, we must compactify on a 6D manifold to recover a 3+1D

theory (our de Sitter spacetime). For explicit calculations, it is useful to pick a slicing of de Sitter space.

This is in reference to a foliation of de Sitter space which is an equivalence class of its submanifolds. These

different submanifolds are known as the leaves of the foliation and in essence decompose the space into

smooth hypersurfaces with different coordinates. In this case we choose coordinates that make de Sitter

space look flat within a certain region. We do this by using the flat slicing of de Sitter space dS given

by: ds2 = 1/(Λ|t|2)ηµνdx
µ ⊗ dxν . Here t is the conformal time coordinate (instead of writing η), Λ is the

cosmological constant, ηµν is the usual Minkowski metric, and dxµ is the basis living on the fibres of the

cotangent bundle. A flat slicing gives us a temporal domain over which the metric is defined. The range

is give by −1/
√

Λ ≤ t < 0, where t = 0 represents late times†. Next, we define the full superspace we are

working over as M10|4 = IR3,1|4×M4×M2, where IR3,1 is our super Minkowski space, and M4×M2 ≡ M6

is some non-Kähler 6D internal space (written as a product space to account for multiple scaling factors for

different pieces of the internal space). The total superspace has a dimension of (10|4)D (with 4 referring to

the 4 pair of Grassmanian variables) however it suffices for our analyses to look at the non-supersymmetric

10D part of the space: M10 = IR3,1 ×M4 ×M2, and realize it as a Glauber-Sudarshan state. Moreover, to

align with more general geometries that include warping, we define the metric as the warped geometry [11]:

ds2 =
1

ΛH2(y)|t|2
ηµνdx

µ ⊗ dxν +H2(y)
[
F1(t)gαβdy

α ⊗ dyβ + F2(t)gmndy
m ⊗ dyn

]
(35)

Here H(y) is the warp factor that depends on the internal space coordinates {ym, yα} which mixes

the DOFs of the internal and external space, and {xµ} are the coordinates of the external space IR3,1.

Furthermore, (F1(t), F2(t)) are scaling factors of the different internal subspaces (M4,M2), respectively,

equipped with metrics (gαβ , gmn). However, when computing quantum corrections such as ⟨σ| ĝµν |σ⟩, we

must compute path integrals over the flat metric to reproduce the above metric. Path integrals require a full

description of the system’s action and as of yet there are no well-defined action for type IIB string theory [13].

This makes us consider the uplift of type IIB string theory to M-theory, an 11D string theory. The action

of lifting can be thought as the reverse process of compactification whereby different compactifications of

M-theory give us the different type II string theories (we can recover type IIA string theory by compactifying

on S1, and type IIB on T 2 = S1×S1). Thus, we work in the framework of M-theory, compactify once to get

type IIA string theory, and compactify a second time to get the type IIB theory. In this case the multiplet

for M-theory is (gMN , CMNP , ψM ), where gMN is the metric field over the full 11D space, CMNP is a 3-form

axion field, and ψM is a vector-spinor (also known as a gravitino). This 11D space is the 11D supermanifold:

M11 = IR3,1×M4×M2× T2

Z2
. Here IR3,1 is our super Minkowski space, M4×M2 ≡ M6 is the internal space,

and T2

Z2
is the extra 11th direction where Z2 is the orbifold action, and T2 = S1 × S1 is the 2-torus. As with

type II string theory, the full supermanifold is 11D but we will look at a non-supersymmetric state in 11D.

We define coordinates of the space as: (xµ, xν) = (x0, . . . , x3), (yM , yN ) = (x4, . . . , x9), (ωa, ωb) = (x10), for

the spaces (IR3,1,M6,
T2

Z2
), respectively. Based off of [13], we can write the of the space in M-theory as the

following:

†Due to the restriction of the spacetime domain, the GS state remains coherent over this same time domain.
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ds2 =

(
gs

HHo

)−8/3

g̃µνdx
µ ⊗ dxν +

(
gs

HHo

)−2/3 [
F1

(
gs
H1

)
g̃αβdy

α ⊗ dyβ + F2

(
gs
H1

)
g̃mndy

m ⊗ dyn
]

+

(
gs

HHo

)4/3

g̃abdω
a ⊗ dωb.

(36)

Here gs =
√

Λ|t|H(y) is the type II string coupling constant where Λ is the cosmological constant, t

is the conformal time, and H = H(y) is the warp factor. Furthermore, H0 = H0(x) ∝ g33(x), H1 =

H1(x, y) = H(y)H0(x), (g̃µν , g̃MN , g̃ab) are the metrics (up to some factors of H and H0) of the spaces

(IR3,1,M4 × M2,T
2

Z2
) with cotangent bases (dxµ, (dyα, dym), dωa), and Fi are the scaling factors for the

different pieces of the internal space which depend on the temporal scaling factor a(t). Now that we have an

expression for the space we are working with, and have defined the Glauber-Sudarshan states |σ⟩, we move

with computing the quantum correction to the metric operator ⟨σ| ĝµν |σ⟩ which is normalized by ⟨σ|σ⟩.
Plugging in the definitions |σ⟩ = D(σ, t) |Ω⟩, and dividing the numerator and denominator by ⟨Ω|Ω⟩ we see

that these are both path integrals (functional integrals over all possible evolutions of the fields) over the

M-theory multiplet in 11D [13]:

⟨σ| ĝµν |σ⟩ ≡ ⟨ĝµν⟩σ =

ˆ
D[gMN ] ∧ D[CMNP ] ∧ D[ψM ] ∧ D[ψ̄N ] eiS D†(σ, t)gµν(x)D(σ, t)
ˆ

D[gMN ] ∧ D[CMNP ] ∧ D[ψM ] ∧ D[ψ̄N ] eiS D†(σ, t)D(σ, t)

. (37)

Here D[AM...N ] ∼
∏

M,...,N dAM...N are the path integral field measures (where AM...N represents the

different fields of the multiplet which are integrated over), S is the total action of the system, D†(σ, t)

is the non-unitary shift operator, and gµν(x) is the metric of the external Minkowski space IR3,1 (which

when including the supersymmetric part of the supermanifold becomes super Minkowski space IR3,1). It is

noted that the measures associated with ghosts {ci, c̄j} (fields with negative norm used to maintain gauge

invariance) are suppressed. Now this path integral is much too complex at this level of generality with

Grassmanian integrals, so we pick three representative sample scalars (φ1, φ2, φ3) for each of the DOFs

sectors (NS-NS, R-R, NS-R). Theses scalars fix the DOFs to σ ≡ (φ1, φ2, φ3), and so for the DOFs φ1 that

contribute towards the metric operator correction we have the replacement: ⟨ĝµν⟩σ → ⟨φ1⟩σ. Once fixed,

the path integrals in the numerator and denominator of ⟨φ1⟩σ fall under a class of path integrals that maybe

computed using nodal diagrams due to the shifted vacuum structure of the Glauber-Sudarshan state. These

nodal diagrams are general interaction diagrams connected by nodes, which are configurations of incoming

momenta. Using the amplitudes of the nodal diagrams {As} it is possible to express the quantum correction

as the following [12]:

⟨φ1⟩σ =

TLN +
∑
n,...,s

cmnpqrs N (1)
nmp

(k; q) ⊗N (2)
nmp

(l; r) ⊗N (3)
nmp

(f ; s)

TLD +
∑
n,...,s

cmnpqrs N (1)
′

nmp
(k; q) ⊗N (2)

nmp
(l; r) ⊗N (3)

nmp
(f ; s)

(38)

Here (TLN,TLD) are the tree-level contributions to the numerator and denominator path integrals,

respectively. The loop contributions are captured by the summation over the coupling constants cnmpqrs

and {N (i)
nmp

(a; b)} are a diagrammatic series of amplitudes of different nodal diagram classes. Here N (i)
nmp

(a; b)
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is associated with the interaction of fields of the form φb
i
(a), where b is an integer, a is the momentum of the

incoming fields, and i = 1, 2, 3 are the different scalars which represent the DOFs of the multiplet in M-theory.

Furthermore, the prime in N (1)
′

nmp
(k; q) refers to interaction diagrams without sources. These nodal diagrams

diverge with structure of the Gevrey kind (meaning they diverge factorially) and require Borel resummation

to restructure the divergence into non-perturbative solitonic corrections. Using the nodal amplitudes and

Borel re-summation gives the following correction to the metric operator [13]:

⟨φ1⟩σ =
∑
{s}

 1

g
1/l
(s)

∞̂

0

dS exp

− S

g
1/l
(s)

 1

1 −A(s)Sl


P.V

µ̂

kIR

d11k
ᾱµν(k)

a(k)
Re

(
ψk(X)e−i(k0−κ̄IR)t

)
, (39)

where {s} is the set of interactions, g(s) is the set of coupling constants, S parametrizes an axis in the

Borel plane, A(s) is the amplitude of all possible nodal diagrams, P.V is the principal value of the integral

over S, (kIR, κ̄IR) are IR scales, ᾱµν = αµν/V is a 2-form normalized by the volume V of the space M11,

a(k) = k2/V are, and ψk(X) is the spatial wavefunction of the Glauber-Sudarshan state over the space M11

(projecting the GS state |σ⟩ into the coordinate space of M11). It turns out the first piece of the form
∑

[. . . ]

exactly corresponds to the inverse of the cosmological constant (at a given IR scale κ) [12], which is defined

over the same time domain as the Glauber-Sudarshan state (− 1√
Λ
< t ≤ 0):

1

Λκ
≡

∑
{s}

 1

g
1/l
(s)

∞̂

0

dS exp

− S

g
1/l
(s)

 1

1 −A(s)Sl


P.V

, − 1√
Λ
< t ≤ 0. (40)

This is known as the integral form of the cosmological constant Λκ, and is positive definite over the flat

slicing of the temporal domain. To recover the result for type II string theory from M-theory, one need only

compactify along a compact direction, which leaves the above form of the cosmological constant unchanged.

This shows us that using the Glauber-Sudarshan states (which have the isometries of Minkowski space and

preserve supersymmetry) gives us the correct sign for the cosmological constant. Recall the issues of the

classical no-go theorems and field theories on expanding spacetimes are not present in the formulation of a

coherent state over the Minkowski background. Additionally, the Glauber-Sudarshan states obey the energy

conditions mentioned at the beginning of section 2 [12]. Here the cosmological constant functional expression

comes from the quantum correction of the metric and it having the correct positive sign means we indeed

have compactifications to de Sitter dS4 space from type II string theory. Hence, we can consider de Sitter

space as a candidate of our universe as coming from a type II string theory compactifications.

3 Discussions and conclusion

Classical no-go theorems prevent non-singular compactifications to de Sitter space in type II superstring

theory. This prevents us from having a description of supergravity or have vacuum energies which produce

the right sign, given by the interacting vacua |Ω⟩. Furthermore, we see that fields defined over an expanding,

curved spacetime develop time dependent frequencies and thus prevent us from defining an effective Wilsonian

action at a given energy scale. This comes from the ambiguity of a time-dependent interacting vacuum |Ω(t)⟩.
Further complications come from the fact that the space must preserve certain energy conditions, and that

the g00 component of the metric cannot diverge as we approach flux source singularities on the spacetime

manifold.
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This pushes us to instead consider a class of general coherent states, known as Glauber-Sadarshan states

|σ⟩ over super Minkowski space IR3,1 which have the desired de Sitter isometries and does not run into the

issues mentioned above. It is found that we can define these states over a given temporal domain via the

non-unitary shift operator D(σ, t) which excites the interacting vacua to give the GS states which preserve

the isometries of super Minkowski space IR3,1. This allows us to compute the metric operator quantum

corrections ⟨σ|ĝµν |σ⟩. From the quantum correction, a piece is identified with the cosmological constant Λκ

(at a given IR scale κ) and is positive definite, meaning it has the correct sign. This means we can have

consistent compactifications to de Sitter space dS4 in type II string theory and thus de Sitter space can be

used as a candidate for our universe where the vacua are instead Glauber-Sadarshan states |σ⟩.
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5 Appendix: Pertinent preliminaries

It is important to have some understanding of the framework we use (superstring theory) to have a

better picture of the analysis being done. In the first section of the preliminaries we start by motivating

why we need frameworks beyond QFT when also considering gravity. Thereafter, we look at which fields

(and their cotangent form duals) can be defined on the spacetime manifold, giving us a description of the

different fundamental particles that can exist in our universe. After that we look at generalization of point

particles (branes) which are needed for the world sheet description of string theory, whereby the fields we

define that live higher dimensions require higher dimensional objects objects to be defined on (including

orientfold planes). These higher dimensional objects (fields, branes, orientfold planes) act as flux sources in

the theory. Next, we look at a characteristic feature in superstring theory which is supersymmetry, an extra

symmetry of the action which allows us to alleviate certain problems in non-supersymmetric field theories.

Finally, we look at compactification of manifolds which will play a big role in computations, and is relevant

to the algebraic and topological structure of string theory. This allows us to separate and control the extra

dimensions that result from string theory, and recover a 3+1 dimensional spacetime in which we currently

reside.

5.1 Frameworks beyond QFT

Before proceeding in the framework of supersymmetric string theory, we must first look at why such a

framework is required at all. Recall that QFT was a necessary construction as quantum mechanics fails

to describe the interactions of particles with different characteristics such as colour/adjoint representation
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indices, chirality, and helicity (or phenomena such as vacuum polarization for example). Quantum field

theory nevertheless has issues, one such being the failure of perturbation theory in higher order Feynman

diagrams of interacting particles, in which the amplitude for the n-th loop diagram scales as n!† and diverges

[14]. A more infamous and relevant problem to us is the non-renormalizability of gravity. A typical QFT has

an effective Wilsonian action defined at a certain energy scale. This is done by imposing a low energy/IR

cutoff which acts as a regularization scheme for the integrals over the high energy modes. The process of

integrating out high energy modes (known as Wilsonian integration) generates a renormalization group flow

where the theory may flow to a conformal/Gaussian fixed point in the coupling constant phase space. Once

the iteration process is done we are left with an effective action at a given energy/UV scale where there

are no longer any irrelevant operators. When trying to couple the theory to gravity, however, there is an

anomalous mixing between the UV and IR cutoff values and so we cannot reconcile the discrepancy between

the physics at the different scales. To explicitly see the shortcoming of combining gravity with QFT, consider

the Einstein-Hilbert action, the simplest action we can construct from the metric gµν and the Ricci curvature

form Rµν , which gives rise to the vacuum Einstein field equations:

S =
1

16πG

ˆ
d4x

√
−g (gµνRµν) =

1

16πG

ˆ
d4x

√
−gR. (41)

Here G is the Newton gravitational constant,
√
−g =

√
− det gµν is root determinant of the metric used

to make the integral invariant under Lorentz transformations, and R is the Ricci scalar which captures the

curvature of the spacetime. To couple this to a quantum field theory, we note the relevant coupling of

the quantum theory to gravity is 1/Mpl [15], where Mpl is the Planck mass. To construct interactions of

perturbing curvature of the spacetime in the form of gravitons, consider small perturbations around a flat

Minkowski space ηµν :

gµν = ηµν +
1

Mpl
hµν . (42)

Here hµν is a rank-2 symmetric tensor who’s components are small such that hµν ≪ 1. Plugging this

perturbation into the action defined above, and identifying the Newton constant as G = 1/(8πM2
pl

) we end

up with:

S =

ˆ
d4x

[
(∂µhµν)2 +

1

Mpl
h(∂µhµν)2 +

1

M2
pl

h2(∂µhµν)2 + . . .

]
=

∞∑
k=0

ˆ
d4x

[(
h

Mpl

)k

(∂µhµν)2

]
. (43)

Here ∂µ = gµν∂ν is the regular partial derivative ∂ν contracted with the metric to raise the index, and

h are the graviton fields. This leads to an infinite number of gravitational interaction vertices in the form

of graviton fields hk, which become strongly coupled at high energies and are irrelevant with respect to the

normalization group flow.

To see the issue with this, we can compare this with the theory of quantum electrodynamics (QED)

where we get a vertex of the form gψ̄ψψ̄ψ where (ψ, ψ̄) are fermionic field spinors and g ≪ 1 is the relevant

coupling constant of the interactions. It turns out that this a non-renormalizable vertex at high energies and

gives unphysical diverging results. In QED we can attempt to resolve this problem by including extra DOFs

†Current implementations to fix this include Borel resummation which demonstrates the non-perturbative structure of

solitonic corrections.
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in the theory and recover a vertex in the action of the form S ∼ gψ̄ψA−m2A2 where A is a field describing

new massive particles added in the theory. This vertex turns out to be renormalizable. This essentially

adds massive virtual particles which mediate the interactions of the defined particles, but for our case with

gravity, we would need to add an infinite amount of massive virtual particles to control the behaviour of the

infinite amount of graviton interactions. A theory where we require to add an infinite amount of new DOFs

and information to describe the behaviour of fields does not lead into a consistent QFT with point particles.

We thus turn toward the framework of string theory where we replace point particles by strings and don’t

run into the conflicts mentioned above. The reasons for selecting a supersymmetric version of string theory,

known as superstring theory, is due to the fact that non-supersymmetric theories develop tachyons. These

tachyons are particles with imaginary mass that propagate faster than light, which indicate the theory is

being defined over the wrong vacuum. The inclusion of super/fermionic strings (and hence supersymmetry)

does not run into this issue. We now turn to defining the fields on the spacetime manifold which tells us

which particles can exist in the theory.

5.2 Field representations

It is informative to define which fields and forms can exist on our spacetime as this tells us exactly what

kind of fundamental particles can exist in our universe. We can switch between fields and their dual forms

via a musical isomorphism \ that maps between the cotangent and tangent bundles for a given space M :

\ : T ∗M → TM . One way to constrain such objects on the manifold is by looking at its topological properties

via the homology and cohomology groups. This tells us which closed forms (and thus harmonic forms via

Hodge’s theorem of form decomposition) and cycles can live on the manifold up to some equivalence class

as a consequence of the topology. This is given by the Betti and Hodge numbers (dimensions of the real and

complex cohomologies), and the topological properties of the space. The study of complex manifolds this way

is a very fascinating topic but shall only come up again in our discussions should we deal with the Calabi-

Yau manifolds. An excellent review of complex manifolds may be found in the lectures by Candelas [6]. An

alternate approach which we follow is to consider the symmetry group representations. A group (specifically

a Lie group) has an infinite amount of possible representations each that give different information. The

fields that can exist in our theory are given by the tensor representation of the group, which are finite

tensor products of the group’s fundamental representation (given by matrices or roots of the associated Lie

algebras). These fields/tensor representations transform under other representations of the group (either

the operator or adjoint representation). We look at constructing the fields of the theory through the tensor

representation and thereafter describe the different multiplets of fields allowed. This is analogous to the

construction of singlet and triplets in spin- 12 systems in quantum mechanics or the construction of multiplets

in particle physics via the Young Tableaux decomposition.

For our case of superstring theory, we have two sectors of tensor representations: the bosonic sector

and the fermionic sector, which are analogous to the bosonic and fermionic fields in QFT. Bosonic strings

are 10-dimensional and thus it would be a natural assumption to assume the Lorentz group under which it

transforms is SO(10). This is not the case, however, as for a 10 dimensional momentum vector kµ, we can

perform a Lorentz transformation to make all the components vanish except for the first which is required

for the mass of the state. The remaining 9 null components are trivially invariant under SO(9) and so the

symmetry group is SO(9). Massless states on the other hand have one less DOFs as they have no mass and
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instead transform under SO(8). We will take the constraint that all fields in the theory must have the same

mass (as is required for supersymmetry), and take the masses to vanish to reproduce the fields appearing in

the massless sector (low energy / classical limit) of string theory: supergravity.

To construct the tensor representations (and thus the fields) we will make use of roots and weights of

the symmetry groups’ associated Lie algebras. Consider a Lie algebra g of a symmetry group SO(2n) for

n ∈ Z, over some field F. The algebra has itself a set of subalgebras {gj} ⊂ g, and for one such subalgebra

gs we can choose a basis of commuting Hermitian generators Hi where i = 1, . . . ,dim(gs). The remaining

generators, that is the generators of g that do no span gs, are given by Eα for α = 1, . . . , 2n− dim(gs). The

two sets of generators are diagonalized in such a way that they obey the commutation relation [16]:

[Hi, Eα] = αiEα, (44)

where αi is an n-dimensional vector called a root of the algebra. These roots are of particular interest in

QFT since if the first non-zero component of the root αi is positive, then Eα is a creation operator, while if

negative it is an annihilation operator. These roots will act as the fundamental representations of the group

from which we take tensor products to construct the tensor representations. These tensor representations

are exactly the different fields that exist on the spacetime which are collected in tuples by which group they

transformed under (grouped up into multiplets of fields). The n-component root vectors in a theory with a

symmetry group SO(2n) has the form [16]:

(. . . ,±1, . . . ,±1, . . . ), (45)

where all other entries are zero. All non-zero entries are called the weights of the algebra, which classify

the different roots. That being said, what are the roots in our case? The two roots we will consider come

from excitations of open string states for bosonic and fermionic vacua, respectively. Since we are dealing

with SO(8) in a 10-dimensional space, the roots will have 8/(10 − 8) = 4 components. The bosonic root

is the first excited state of an open bosonic string (in what is called the Neveu-Schwartz sector) which is

the root 8v ≡ v = (±1, 0, 0, 0) [17]. On the other hand, the fermionic root is the first excited state of an

open fermionic string in the Ramond sector which gives the root 8f ≡ f = (− 1
2 ,−

1
2 , 0, 0) ‡. We can use this

to construct the allowed fields of the theory in the form of multiplets via the decomposition of the tensor

products of the roots. An example of such is what kind of fields we can construct from combining two copies

of the root of the Neveu-Schwartz sector:

v ⊗ v = (±1, 0, 0, 0) ⊗ (±1, 0, 0, 0) = (±2, 0, 0, 0) ⊕ (1, 1, 0, 0) ⊕ (0, 0, 0, 0). (46)

The above is a matrix, where the components on the right are different sub-matrices of the matrix. Since

all the fields are grouped up in the argument of the matrix we call it a multiplet of the fields. It turns out

that we identify the fields produced with a symmetric rank-2 tensor (metric) field gµν , an antisymmetric

rank-2 tensor field Bµν , and a rank-0 tensor/scalar field φ (also referred to as a dilaton), which gives us a

decomposition of allowed fields:

v ⊗ v = gµν ⊕Bµν ⊕ φ. (47)

‡Here the chirality of the fermion is determined by if the signs on the non-trivial components are the same or are opposite.
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These multiplets are usually instead written in the form v ⊗ v = (gµν , Bµν , φ). We can continue this

process by permuting the combination of the two roots to get the different multiplets of the theory (for the

two most common considerations of string theory: type IIA and type IIB superstring theory) [18]:

v ⊗ v = (gµν , Bµν , φ)

fo ⊗ fo = (Aµ, C
(3)
µνρ

)

v ⊗ fo = (χ, ξµ)

Type IIA

v ⊗ v = (gµν , Bµν , φ)

fe ⊗ fe = (C(0), C(2)
µν
, C(4)

µνρσ
)

v ⊗ fe = (ψ, χµ)

Type IIB

Here fo and fe refer to an odd and even number of fermions, respectively, and C(n)
µ...ρ

are known as

axion fields. We see both theories admit a metric field, an antisymmetric field, and a scalar field, as is

given by (gµν , Bµν , φ). We also see that type IIA admits odd forms (Aµ, C
(3)
µνρ

) while IIB admits even forms

(C(0), C(2)
µν
, C(4)

µνρσ
). This is noteworthy as it will restrict the dimensionality of the different branes that give

charge in each theory (more on this in the branes section). Additionally, type IIA admits non-chiral fermions

(χ, ξµ) while IIB admits chiral fermions (ψ, χµ). It is noted that the usual way to call these multiplets are

the NS-NS (Neveu-Schwartz) sector for v ⊗ v, the R-R (Ramond) sector for fi ⊗ fi, and finally NS-R for

v ⊗ fi. In both theories, the NS-NS and R-R sector have 128 bosonic DOFs while the NS-R sector has

128 fermionic DOFs, for a total of 256 DOFs in each theory. The DOFs of a string theory never changes

under a compactification and allows us to count how many of each fields exist after compactifying from type

IIA/IIB to a lower dimensional theory for example. Furthermore, the DOFs are exactly the same due to

supersymmetric construction of the theory (more on this in the supersymmetry section). It is noted that all

above fields are Abelian and non-Abelian fields arise from stacking multiple coincident branes together.

As mentioned before, supersymmetry requires all the masses of the fields to be the same, which is evident

in the massless sector of the theory to which we have just constructed above for SO(8). The massless sector

(or low energy limit) of string theory is known as supergravity. The massive states of the theory (such

as Kaluza-Klein states) will be found in following sections through compactification. These constructed

multiplets (and thus the fields they contain within them) tell us what type of particles exist in our universe

in the string theory model. Much like in QED where the gauge field Aµ gives charge to point particles, these

fields naturally charge higher dimensional objects which can be thought as generalizations of point particles.

These generalizations are known exactly as branes and we dive into their properties in the following section.

5.3 Branes and orientfolds

Above we have shown which fields that exist within our theory which are flux sources (energy flux through

a given surface) that contribute to the stress tensor in the Einstein field equations. These energy sources

relate directly to the conditions which restrict the existence of dS4 compactifications. Another energy source

which contributes to these conditions are extended, charged objects which comprise of (anti) branes and

(anti) orientfold planes. We build up the motivation for including such objects in our theory in this section.

The spacetime on which we define a theory is given by Lorentzian manifold with a metric signature of

(1, n − 1) for an n-dimensional space admitting one temporal dimension, hence the 1 in the beginning of

the signature. It is informative to consider a range of metrics on this manifold that gives rise to different

properties (and thus physics) such as the curvature of the space, whether or not it expands, the sign of the

cosmological constant, etc. One such property of interest is the topology of the manifold which constrains
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what fields and cycles (boundary submanifolds) can be defined on it and hence tells us what fundamental

objects exist in our universe. In the search for a unified theory combining QFT and general relativity,

certain spaces give rise to fields with much higher dimensionanilty than the current universe we live in, such

as the 10-dimensional SO(8) spinor mentioned in the previous section. Such an object must live in a higher

dimensional space as is characteristic to string theory. This might seem problematic as we live in a 3+1

dimensional spacetime, but the extra dimensional degrees of freedom are defined over a separated product

space which is taken to vanish as a shrinking compact space, also known as compactification. To illustrate,

a 10-dimensional theory would have 4 of its dimensions describing our universe, while the remaining 6

dimensions are a compact space which vanishes in the compactifying limit to leave us with a 4D theory. We

can constrain certain properties of the 6-dimensional space‡, which tell us it must be a complex Calabi-Yau

manifold. When not trying to directly recreate the results of the current universe we live in, these higher

dimensional theories require corresponding higher dimensional objects to make sense of the notion of charge.

These higher dimensional charged objects are known as branes and can be thought as the generalization of

point particles. In topological string theory these branes are special Lagrangian submanifolds, which are

part of a derived category of coherent sheaves of Calabi-Yau manifolds. This is very interesting but won’t

have much use in this paper. The reader however is strongly encouraged to look into this fascinating study

given in Aspinwall’s textbook [19].

Moving away from topological string theory, we look at branes in terms of forms. Recall in QED, there

is a perturbative coupling term in the action of the form e
´
A = e

´
dxµAµ, where e is the dimensionless

interacting coupling of the theory which also represents the usual electric charge in electrodynamics, Aµ is

the gauge field (or vector bundle connection), and dxµ is the differential form basis living on the cotangent

space. We say the charge of the point particles in the theory is given by the 1-form A = Aµdx
µ which

we integrate over the spacetime manifold. We now instead turn to a rank p-tensor Aµ1
. . .µp

which are

components of an associated p-form:

Ap ≡ 1

p!
Aµ1 . . .µp dx

µ1 ∧ · · · ∧ dxµp . (48)

Here ∧ is the usual wedge product between forms (antisymemtrization of the tensor product), and

the factorial normalization is to account for the different ways we can recover the same p-form via the

antisymmetric properties of ∧. This p-form transforms under a generalized gauge transformation of the form

[20]:

Ap −→ Ap + dΛp−1, (49)

where d is the usual exterior derivative and Λp−1 is a (p − 1)-form serving as the higher dimensional

parameter for gauge transformations. Much like how the objects that are naturally charged under the 1-

form A1 ≡ Aµdx
µ are the point particles, p-branes are the extended objects of p-spatial dimensions that

charged under (p+ 1)-forms Ap+1. To gain some intuition, p = 0 branes corresponds to the points particles,

while p = 1 branes corresponds to strings as so forth. The natural interacting coupling in the action that

gives rise to the charge of these objects (branes) has the form:

‡Such constraints include compactness to have a finite Newton constant G, it being Ricci flat, and having an integrable

complex structure. Such constraints are covered in the lectures by Candelas, mentioned in the previous section.
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iQp

ˆ

Σ

Ap+1 = iQp

ˆ

Σ

dxµ0 ∧ · · · ∧ dxµpAµ0
. . . Aµp

, (50)

where Qp is the electric charge density of the brane, Σ is the (p + 1)-dimensional world volume of the

brane, and in this case we take the indices of the p-form to start at µ0 for p = 0. Often times in string theory

the tension of the brane is mentioned in place to its charge. This correspondence is through their mass per

unit volume, a relationship that is straightforward using natural units.

Furthermore, to complete the theory we also require magnetically charged objects. This comes naturally

from the Montonen–Olive duality (a strong-weak duality much like S-duality) of the fields seen in Maxwell’s

equations. To get the magnetic analogue of the p-brane we first define the gauge invariant field strength form

Fp+1 = dAp which satisfies the free Maxwell equations d ⋆ Fp+1 = 0, where ⋆ is the Hodge star operator. To

get the magnetic analogue, we dualize the field strength by applying the Hodge star and write is as an exact

form of another form (where we use the notation ⋆B ≡ B̃)[20]:

⋆dAp+1 = ⋆Fp+2 = F̃D−p−2 = dÃD−p−3. (51)

Here the change in indices from the second equality to the third is from the definition of the Hodge star

operator ⋆ : Ωp(M) → ΩD−p(M), where Ωp(M) is the collection of differential p-forms on a D-dimensional

space M . Thus, we see from above that the objects that are magnetically charged under ÃD−p−3 are

(D− p− 4)-branes, with analogous magnetic charge densities Q̃D−p−4. Thereafter, it turns out that the end

points of open strings are confined to hyperplanes which are these same branes. The endpoints of strings obey

Dirichlet boundary conditions and thus the branes over which they are fixed to are known as D-branes. The

electrically and magnetically charged branes also gives rise to a generalization of Dirac quantization known as

DNT quantization. It is important to note that branes are simultaneously charged by different independent

sources. The presence of open strings ending on the branes give rise to electric and magnetic charge in the

form of gauge fields Aµ living on the surface of the brane. Furthermore, branes are charged by the R-R fields

from the previous section, which give rise to fields that are orthogonal/transverse to the brane. Much like

how colour charge and electric charge are independent in QCD, the charge from the open strings and R-R

fields are also independent. The existence of branes moreover gives rise to corrections in mass spectra of the

states in the theory in the form of an effective action. When N D-branes are spatially coincident (each with a

gauge field defined over it with a U(1) symmetry) it gives rise to a SU(N) non-Abelian gauge theory. This is

known as the enhancement of gauge symmetry. There are also notions of M -branes and F -branes occurring

in M-theory and F-theory respectively, as well as NS-branes, but they won’t be motivated here for brevity.

Recalling from the previous section that type IIA string theory admits odd forms (R-R forms/fields) while

type IIB admits even forms, this gives rise to odd and even dimensional branes for each theory respectively

(a Dp-brane is p+1 dimensional). Explicitly, type IIA admits D0, D2, D4, D6, D8 branes for the R-R sector

and F1, NS5 branes for the NS sector. There is no NS-R sector as fermionic fields do not give rise to charged

branes. Moreover, type IIB admits D1, D3, D5, D7, D9 branes for the R-R sector and F1, NS5 branes for

NS sector. Now that we have defined the branes in our theory, where are the strings? The strings, which are

the most fundamental objects of the theory (much like how in QFT the most fundamental objects are fields

which give rise to particle states), are precisely the D0, D1, and F1 branes. F1-branes are the fundamental

bosonic/fermionic closed/open strings that are excitations of bosonic/fermionic vacua whose endpoints are
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fixed to the Dp-branes. D0-branes are open strings that end on itself which gives rise to point particle like

dynamics. Finally, D1-branes are strings that have other open strings ending on it. Being that strings are

special cases of branes, we should instead call the theory brane theory, but branes themselves cannot be

dynamic without strings ending on them which ultimately give rise to the fields occurring in our theory.

Branes are dynamic objects which are characterized by the different dynamic open string states defined

over them. We may also have higher dimensional objects through which branes propagate: orbifolds and

orientfolds. In mathematics, orbifolds are generalizations of manifolds which are locally diffeomorphic to

a quotient of Rn and some finite group Γ given by Rn/Γ [21]. Furthermore, orbifolds/orientfolds are loci

meaning the set of points they contain satisfies specific conditions/equations which precisely fix their position

in space. In the context of string theory, orbifolds are objects that are written as orbit spaces M/G, where M

is some manifold andG is an isometry group corresponding toM . If an open string on a D-brane has a left and

right moving mode defined on it, we can perform an orientation reversal (orientfold) transformation Ω, which

switches the two. If we project out the string states which are not invariant under this discrete symmetry

(non-eigenstates), we get what is known as gauging Ω or orientfolding [22]. The gauging of the reflection

operator (I : x → −x) gives the standard orbifold, while the inclusion of the orientation reversal gives us

an orientfold. Thus for a manifold M , an example of an orbifold is M/I, while an example of an orientfold

is M/IΩ. Orbifolds and orientfolds give rise to different effects such as non-vanishing vacuum diagrams

which must be cancelled via the inclusions of stacked branes (known as non-Abelian gauge cancellation).

One of these non-vanishing vacuum diagrams takes the algebraic form of a Klein bottle, which since it is not

cancelled it means there is a non-vanishing charge contribution from the diagram. This causes orientfolds

to also carry charge. The simplest example of an orbifold is S1/Z2, where S1 is the 1-sphere (unit circle),

and Z2 is the cyclic group of order 2. Here S1 has the identification of points via the equivalence relation

y ∼ y + 2πR (R is the radius of S1), while Z2 has the identifications y ∼ −y, for y ∈ S1. Since we can

identify all the points of the top semicircle of S1 with the bottom semicircle of S1 via the Z2 identification,

we are left with the top semicircle as the geometric picture for the orbifold S1/Z2.

It is noted that often times branes are wrapped (which give rise to non-vanishing winding numbers)

compact directions. This allows us to recover lower dimensional theories under compactification†. Now that

we have defined the fields that exist in our theory and the objects which they charge (that both act as energy

sources contributing towards the compactification conditions), we can move onto an important symmetry of

the theory’s action: supersymmetry.

5.4 Supersymmetry

Within the framework of QFT there are a number of subtleties that cause problems with modelling the

universe. These conflicts are resolved via imposing the supersymmetry (susy) constraint in the action of

the theory. Before delving into the framework of supersymmetry, we briefly outline some problems are that

resolved by it.

In renormalizable quantum field theories, such as a φ4 scalar field theory in 3+1 dimensions, the zero

point or vacuum energy does not cancel and diverges:

†For example, one could wrap a 2D plane around S1 to recover a cylinder. When compactifying along the S1 direction we

are left with a line. An example of such in string theory would be recovering the F1 string in type IIA theory by compactifying

an M2 brane occurring in M -theory (which is wrapped along S1) along the S1 direction.
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⟨E⟩ =

∞̂

−∞

d4k
√
k2 +m2 =

∞̂

0

dk dk0 k
2
√
|k|2 − k2

0
+m2 −→ ∞. (52)

Here k2 is the modulus of the 4-momentum kµ, and m is the mass of the bosonic scalar field φ. The

fact that the vacuum energy isn’t controlled is problematic as it constrains the value of the cosmological

constant Λ, which in turn determines how the universe expands in cosmological theories. We certainly don’t

want to have a diverging Λ as it would imply a singularity in the rate of expansion which is not the case for

our universe. In a supersymmetric theory however, as seen before, the DOFs of the bosonic and fermionic

sectors match up. The zero point energy (with ℏ = 1) would have contributions from the fermionic and

bosonic sector of the theory:

⟨E⟩ =
1

2

[∑
k

ω
(b)
k −

∑
k

ω
(f)
k

]
. (53)

These frequencies {ω(b,f)
k

} depend on the field masses (ω(b,f)
k

)2 = (k(b,f))2 +m(b,f)) and since supersym-

metry requires all field masses to be the same (and that the bosonic and fermionic sector of the theory is

the same), the sum exactly cancels out in the computation of the vacuum energy and gives us a finite value

of 0. Another problem in which supersymmetry proved to be useful in is the Coleman-Mandula theorem.

This states that an internal symmetry generated by some operator Tα for a symmetry group G can only be

combined with a Poincaré (extended Lorentz) group IR3,1⋊O(1, 3) in a trivial way [23]. This means that no

commutators or anti-commutators of Tα can produce a generator of the Poincaré group Kαβ . The theorem

tells us that combining the symmetry groups would have to be a direct product of the two, taking the form

G× (IR3,1 ⋊O(1, 3)). This condition can be bypassed, however, with the generators of the susy algebra QL
α

which anticommute to produce a generator of the Poincaré group: {QL
α
, QM

β
} = δLMKαβ [24]. We now we

move onto the supersymmetric formalism.

The action of some symmetry group G on some field A is denoted as δGA, which tells us how the field

transforms under the group. In a supersymmetric theory, the action has a continuous symmetry by which a

field can be transformed into a functional combination others, such as δGA = F [B,C], for fields (A,B,C).

The generators of the susy algebra are known as supercharges, where if the system does not break supersym-

metry, there is a maximum of 32 real supercharges. Furthermore, the theory of supersymmetry makes use

of supermanifolds which are other generalizations of manifolds with extra fermionic (Grassmannian-valued)

dimensions (θ, θ̄). The bosonic dimensions of the manifold are the normal spatial direction xµ [25]. The

extra degrees of freedom require us to have supercoordinates and supercovariant derivatives defined over the

superspace, these are given by:

yµ = xµ + iθσµθ̄ = xµ + iθασµ
αβ
θ̄β , Dα =

∂

∂θα
+ iσµ

αβ
θ̄β∂µ. (54)

Here xµ are the usual spacetime coordinates (with bosonic DOFs), θα are the spacetime-extension co-

ordinates (with fermionic DOFs), (σµ)αβ are the usual Pauli spin matrices, and the extra term in the

supercoordinate is analogous to adding an extra complex dimension to a real space. It is noted the above is

for N = 1 susy in 4 dimensions, where N refers to the number of set of Grassmanian variables in the theory.

For higher order susy theories, the supercoordinates and supercovariant derivatives receive additional terms

for the new fermionic DOFs. Another piece of convention for susy theories is the conjugate (ψα)∗ ≡ ψ̄α̇,
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(although we won’t be putting the dots on the indices in this paper), which is not to be confused with the

usual Dirac conjugate in QFT, i.e. ψ̄ ≡ ψ†γ0. To get a better understanding of the spectrum of states or

fields allowed in a susy theory (which are grouped up as supermultiplets), we will briefly motivate N = 1, 2

susy following the work by Gaumé & Hassan [26].

We begin by looking at the scalar/chiral supermultiplet Φ in N = 1 susy, which is a multiplet of fields

that have the associated supersymmetry of the action. The multiplet is defined by the constraint of the

form D̄αΦ = 0. With this constraint in mind we can write down the chiral multiplet as the addition of the

following fields:

Φ(y) = φ(y) +
√

2θψ(y) + θ2F (y), (55)

where we have y as our supercoordinate, a scalar field φ, a chiral fermionic field ψ, and an auxiliary

field F required for the off-shell closure of the algebra. The fields in this multiplet are superpartners of each

other, all required to complete the susy algebra. Here we have written the multiplet as an addition of fields

instead of grouping them up as a tuple (φ,ψ, F ), which will be useful in writing a susy-invariant action

integrand. Additionally, we also consider the vector multiplet of the theory satisfying the condition V = V †,

and making use of the Wess-Zumino gauge [26], we recover the following multiplet:

V (y) = −θσµθ̄Aµ(y) + iθ2θ̄λ̄(y) − iθ̄2θλ(y) +
1

2
θ2θ̄2D(y), (56)

where we have a gauge field Aµ, a pair of non-chiral fermionic fields (λ, λ̄) and another auxiliary field

D. Now, to find the dynamics of these fields via their equations of motion, we must define an action that

is supersymmetrically invariant which we can vary with functional variations δ. To construct this invariant

action (as a sum of the chiral and vector multiplet actions) we consider how the susy transformation acts on

the different coordinates of the supermanifold, given by:

xµ → xµ + iθσµξ̄ − iξσµθ̄, θ → θ + ξ, (57)

for transformation parameters (ξ, ξ̄). Much like how Lorentz transformations are rotations over a

Lorentzian space, analogously supersymmetric transformations are rotations over a superspace. Using the

above we can construct an invariant action for the chiral multiplet Φ, written as:

SΦ =

ˆ
d4x d2θ d2θ̄ Φ†Φ +

ˆ
d4x

(
d2θ W [Φ] + d2θ̄ W̄ [Φ†]

)
=

ˆ
d4x

(
∂µφ∂

µφ− iψ̄σµ∂µψ + F †F
)

+ Vs[Φ].

(58)

Here the first three terms are the usual kinetic terms of the action for the fields, while Vs[Φ] is the

superpotential term describing the interactions of fields in the theory with arbitrary holomorphic functionals

of the chiral multiplet W [Φ]. Now, for the vector multiplet we can additionally define the gauge invariant,

non-Abelian field strength tensor as:

Wα =
1

8
D̄2e2VDαe

−2V

= T a

[
−iλa

α
+ θαD

a − i

2
(σµσ̄ν)θαF

a
µν

+ θ2σµDµλ̄
a

]
,

(59)
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where T a are the generators of the underlying symmetry group, F a
µν

= ∂µA
a
α
− ∂νA

a
µ

+ fabcAb
µ
Ac

ν
is

the non-Abelian curvature 2-form, Dµ = ∂µ + fabcAb
µ

is the usual covariant derivative, and fabc structure

constants of the continuous symmetry group. With this we can construct a susy invariant action for the

vector multiplet which takes the form:

SV = −1

4

ˆ
d4x

[
d2θ tr(WαW

α) + d2θ̄ tr(W̄αW̄
α)
]

=

ˆ
d4x

(
−1

4
trFµνFµν +

i

4
Fµν ⋆ F

µν − tr
(
iλσµλ∇µλ̄

)
+

1

2
trD2

)
.

(60)

Here we have recovered super Yang-Mills (SYM) N = 1 action, where the first term is the Yang-Mills

action, the second term is the instanton/Chern-Simons action, the third term is the Dirac action, and the

last term is the auxiliary field action. Note we implicitly sum over the group indices a with the use of the

traces. We can conveniently rewrite this action with the complex structure J = idzµ⊗∂µ− idzµ̄⊗∂µ̄ (where

zµ̄ is shorthand notation for z̄µ) of the manifold we integrate over (again explored in the lectures by Candelas

[6]). It turns out a convenient choice is the complex torus that has the following complex structure τ :

τ =
θ

2π
+

4πi

g2
YM

, (61)

where θ is an angle prefactor relating to the CP problem in topological Yang-Mills theory, and g
YM

is

the Yang-Mills coupling constant. This can be interpreted as a complex coupling constant of the theory

as both (θ, g) are coupling constants that run under the renormalization group. The choice of the complex

torus allows us to specify the construction of a gauge theory (by g
YM

), via the fibration of a torus. This is

particularly useful in N = 2 SYM theory, also known as Seiberg-Witten theory. Finally, the way to mix the

chiral and vector multiplets is through the addition of the term tr
(

Φ†e−2gV Φ
)

. With this we can write the

full N = 1 action as the following:

S =

ˆ
d4x d2θ d2θ̄ tr

(
Φ†e−2gV Φ

)
+

ˆ
d4x tr

(
d2θ W [Φ] + d2θ̄ W̄ [Φ†]

)
+ Im

[
τ

ˆ
d4x d2θ tr(WαWα)

]
.

(62)

Here Im denotes taking the imaginary part of the integral. Similarly, for N = 2 with new fermionic

DOFs (θ̃,
¯̃
θ), we have the same action as above but the extra susy constraints require us to remove the

superpotential term. We can also write it in the language of N = 2 by defining the chiral supermultiplet for

N = 2 as:

Ψ(ỹ) = Φ(ỹ) +
√

2θ̃αWα(ỹ) + θ̃αθ̃αG(ỹ), (63)

where G is yet again another auxiliary field, ỹµ = xµ + iθσµθ̄+ iθ̃σµ ¯̃
θ is the N = 2 supercoordinate, and

the other fields are as defined previously. With this we can write the action for N = 2 susy which is exactly

equivalent as the action above without the superpotential term:

S =
1

2
Im

[
τ

ˆ
d4x d2θ d2θ̄ tr Ψ2

]
. (64)

From the actions written above we can vary them via δS = 0 to recover the equations of motions of the

fields, and thus their dynamics. With these motivations for supersymmetry in the theory we consider, we can
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move onto the last and most important prerequisite through which we recover lower dimensional theories:

compactification.

5.5 Compactification

The last prerequisite which plays a fundamental role in the framework of superstring theory is compacti-

fication. This method allows us to generate new theories or generalize current ones by compactifying higher

dimensional objects or manifolds. This can be done typically via writing the manifold of the ambient space-

time as a fibration or product space of two manifolds, and taking the vanishing limit of one of the spaces.

The advantage of a fibration or a fiber bundle — which is a set of manifolds related through a projective

mapping π usually written as A⋊B for two manifolds A,B — is that we can define more general/consistent

fields & connections as the sections of the bundle. This is commonly used in non-Abelian gauge theories

such as Yang-Mills/Chern-Simons theory and theories admitting topological defects. A downside of using a

fibration, however, is that the equations of motion of fields defined over the fibration (the total field being

written as a tensor product of fields defined on each respective space) pick up extra non-linear terms which

completely change the dynamics of the field. These extra terms which are a consequence of the fibration

construction aren’t present when factoring the ambient space manifold as a product space such as A × B.

Thus for our purposes we will consider product spaces only when performing compactifications (also referred

to as dimensional reduction).

More specifically, compactification is a process in general topology where we take a topological space or

manifold, usually one of the extra/internal higher dimensions of the theory, and make it into a compact space

[27]. The physics definition extends to taking this compact space to vanish in the limit that the parameter

which modulates its size vanishes (such as taking the radius of an n-sphere Sn to vanish: R → 0). For the

purposes of our analysis, consider an n-dimensional Lorentzian spacetime whose manifold, Ωn, can have its

temporal and spatial parts factorized as a product space: Ωn = Σn−1 × IR+, where Σn−1 corresponds to

the n− 1 spatial dimensions and IR+ corresponds to the positive definite, one dimensional time dimension.

Ignoring the temporal piece, we can split up the spatial component as another factorized product space of

two manifolds of dimension n−m− 1 and m, respectively, to give:

Σn−1 = (Σn−m−1 × Σ′
m

). (65)

We can now look at the dynamics of the n−m− 1 dimensional theory by compactifying over Σ′
m

which

is done by taking the limit Σ′
m

R→0−−−→ 0, for some size parameter R(Σ′
m

). In other words, to get lower

dimensional theories from higher dimensional ones, we need to dimensionally reduce or compactify over a

compact manifold. For example, say we want to recover a 3+1 dimensional theory of the universe we live in

from a 9+1 dimensional theory of bosonic superstrings. We can write the overall manifold as the product

of a 4-dimensional Lorentzian manifold M4 and a 6-dimensional (3 complex dimensional) Calabi-Yau 3-fold

CY3
† and take the limit when the size of CY3 → 0; i.e.:

(10D Theory) M4 × CY3
CY3→0−−−−−→M4 (4D Theory). (66)

†Certain conditions on this 6-dimensional space force it to be a Calabi-Yau manifold. These conditions include Ricci flatness,

an integrable complex structure, and SU(3) holonomy. Again, this is covered in Candelas’ lectures [6].
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This is of course a simplification of an underlying complicated process but will suffice as motivation for

future sections which make use of compactification explicitly. We present some geometrical examples of

compactification for intuition.

A trivial example of compactification is compactifying a cylinder (S1 fibred over some interval I) along

the S1 direction and recovering a line which spans the interval. A more involved example is adding a point

at infinity away from a complex plane to give a compact Riemann sphere (which can be thought as the

inverse process of stereographic projection over a complex plane). This is a complex projective space P1,

where we have compactified C1‡ to the sphere S2. We can think of this more generally where the set of

projective manifolds Pn are the compactified forms of Cn to which a hyperplane has been added at infinity

[6]. These compact manifolds are particularly useful when constructing Calabi-Yau manifolds. A more

elaborate example of compactification is in the construction of a torus from planes. Consider an elliptic

curve given by the exact form ω = dx/y which can be equivalently written as the curve y2 = P4(x), where

P4(x) is a polynomial of degree 4. When taking the square root on both sides, there is an ambiguity in the

sign in front of the square root, and thus we get a set of two branch cuts for the positive root and two branch

cuts for the negative root. The set of branch cuts for the positive root is defined on a plane different from

the plane on which the negative roots are defined on. We can connect the set of branch cuts between the

two planes parallel to each other, forming a simply-connected topology between the two. Each plane can

then be compactified by bringing points from infinity and the resulting object is topologically equivalent to

a torus. This process looks like [28]:

Figure 1: Constructing a torus via compactification. On the left are two parallel 2-dimensional planes with

two defined branch cuts over each plane. We connect the branch cuts to get the topology in the middle.

Thereafter, we compactify both planes by bringing in points from infinity. The resulting shape is topologically

equivalent (diffeomorphic) to a torus T 2 = S1 × S1 with genus g = 1.

What about recovering known lower dimensional theories from their generalized higher-dimensional coun-

terparts? Consider an 11D string theory with spacetime with coordinates (x0, . . . , x9, x11) — where we have

used a strange convention to take the last dimension as x11 and not x10 — with a metric field gMN , anti-

symmetric axion field CMNP , and a fermionic field ψM for indices (M,N,P ) = 0, . . . , 9, 11. We can consider

‡Some notation has been used here: Cn ≡ Cn = C× · · · × C︸ ︷︷ ︸
n times

.
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splitting the spatial part of our spacetime IR11 as a fibration of S1 and the temporal component IR+:

IR11 = IR10 × IR+ = (IR9 ⋊ S1) × IR+. (67)

What possible multiplets of fields can we construct from this after compactifying on S1? For gMN for

example, we can consider all the indices lying on IR9 giving us gµν where (µ, ν) = 0, . . . , 9. We can also

consider the case where one index lies in S1 giving us gµ,11 (which we can identify as a rank 1 tensor gauge

field Aµ). Finally, we take both indices to lie on S1 giving us g11,11 (which we can identify with the rank 0

dilaton/scalar field φ). Combining this we get our first multiplet of fields:

gMN = gµν ⊕ gµ,11 ⊕ g11,11 −→ gµν ⊕Aµ ⊕ φ (68)

We can repeat this to similarly get CMNP = Cµνρ ⊕ Cµν,11 −→ C(3)
µνρ

⊕ Bµν for the axion, and ψM =

ψµ ⊕ψ11 → Ψµ ⊕ψ for the fermion. Notice these are exactly the multiplets for type IIA string theory! Here

we took an 11-dimensional theory and compactified along S1 → 0 to get a known 10-dimensional theory.

We may also have compactified over a 2-torus T 2 = S1 × S1 to recover type IIB string theory. The more

general 11-dimensional theory from which we can derive IIA and IIB is known as M-theory.

Thus we have seen how to recover lower dimensional theories from higher dimensional ones which lines up

with the interests of this paper. We want a dS4 model for our 3+1D universe that arises from compactifying

type II string theory. The fact that we use superstring theory allows us to have consistency at different energy

scales by having IR/UV mixing, and moreover supersymmetry allows us to avoid the non-cancellation of

the vacuum energy of the theory. With this we can focus on the conditions that restrict us from finding de

Sitter compactification solutions, which includes the inability to write down an effective Wilsonian action or

define a consistent theory vacuum |Ω⟩. It turns out that these solutions exist as excited states |σ⟩ over a flat

supersymmetric background (super Minkowski space).
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