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Abstract: Topological singularities occurring in the parameter space of fields modify

their observables and leave non-decaying signals in the spacetime they are defined over.

These signals can occur at high energy scales and so are of interest for probing the formation

structure of the universe. We investigate classes of quantum field theories which admit these

topological defects and describe their stability via constraints on the homotopy classes of

the fields’ symmetry groups. In particular, we consider the case of a principal U(1)-bundle

which gives rise to linear defects known as cosmic strings that occur in a phase transition

in the early universe via the Kibble-Zurek mechanism. To isolate the cosmic string signal

in 21cm observations we look for detecting the temperature gradient left in its wake, which

is obscured by ΛCDM cosmological perturbations. We present a procedure to enhance

and isolate the signal of the string from ambient primordial noise using match filtering

statistics. It is found in the regime where the tension of the string is Gµ ∼ 3× 10−7 that a

1D unfolded match filter of the temperature matrix shows a clear indication for what the

string signal looks like immersed in noise. We also demonstrate the domain in which the

string signal is bounded by.
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1 Introduction

It is of interest in theoretical physics to study the structure of the universe at different

energy scales. One way to probe this information would be to consider the topology of its

spacetime manifold from which we can constrain the fields defined on it, as well as the sub-

manifolds it admits, via its cohomology and homology groups, respectively†. Additionally,

one could consider its topological invariants which remain unchanged under continuous de-

formations of the space, such as the manifold’s Betty/Hodge numbers and their associated

Euler characteristic, which allow us to count how many fields are defined on the spacetime.

Of the invariants which persist after deformation, one of particular interest are topological

defects or singularities that occur whenever there is a discrepancy between boundary con-

ditions on a cycle due to multiple homotopically distinct solutions of a some differential

equation [1]. In the context of quantum field theory, these occur in the vacuum structure

due to spontaneous symmetry breaking and come from inflationary phase transitions in the

†Given the forms in the cohomology group, we can recover the fields defined over the spacetime given

a flat musical isomorphism \ which maps between the cotangent and tangent bundles.
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early universe. Being that it persists with time, this would allow us to study the formation

structure of the universe long after the transition. The vacuum structure is formed as a

quotient space between the gauge group G of the gauge theory and its subgroup H, and

is known as the moduli space of vacua or the vacuum manifold. The vacuum manifold

itself immersed in the parameter spaces of the fields defined over the spacetime and the

defect modifies the observables of said field. Formally, defects are discontinuous functions

that map from the spacetime to the vacuum manifold and are characterized by their codi-

mension. These defects are presented with rigorous foundations in topological quantum

field theory with the use of category theory [2]. The presence of these defects leads to

observable signals in spacetime, and to study the formation structure of the early universe

these signals must be extracted from ambient fluctuations which obscures them.

Consider for example a non-Abelian gauge theory with some G-bundle over the space-

time manifold M, which is endowed with a natural connection A = Aa
µ⊗dxµ⊗ ta. Here Aa

µ

are the components of the connection where the indices a run over the generators of the

gauge group G while µ labels the different points in M, dxµ is the basis of the associated

cotangent bundle T ∗M, and ta are the generators of G. The dynamics of the gauge theory

are given by the Yang-Mills action, but for the sake of discussing topological defects from

symmetry breaking we will couple the theory to fermionic spinors and massless scalars.

The action of such is given by [3]:

S = −1

2

∫
tr(F ∧ ⋆F ) +

∫
d4y

[
1

2
(Dϕ)2 + ψ̄(i /D −m)ψ − V [A, ϕ; g]

]
(1.1)

The first term is the gauge invariant second Chern form [4] which describe the dynamics

of the gauge field, where F = dA + A ∧ A is the curvature 2-form of M. The second

term describes the dynamics and coupling of the fermionic and scalar fields, where Dϕ =

dϕ + A ∧ ϕ is the exterior covariant derivative acting on a massless scalar field ϕ, /D is

shorthand notation for a contraction with gamma matrices, ψ is a complex spinor field

of mass m, and V [A, ϕ; g] is a potential functional of interacting terms for some coupling

constant g. Notice the lack of spinor terms in the potential functional as that would make

the interaction vertex non-renormalizable. The action admits phase symmetries due to its

invariance under local transformations on the spinor and scalar fields, respectively given

by:

ψ −→ exp (iαata)ψ, ϕ −→ eiβϕ, (1.2)

where αa are complex coefficients contracted with the generators, and β is some integer.

For a fixed energy scale, the scalar symmetry maybe be spontaneously broken via a phase

transition which occurs when cooling down the system past a critical temperature. The

scalar field ϕ is defined to be the symmetry breaking parameter and has an associated

potential V (ϕ) ⊂ V [A, ϕ] which is independent of the other fields. The structure of the

potential is altered during the phase transition which usually occurs in the form of the

decay of a false vacuum via bubble nucleation. The vacuum manifold M of the scalar

field is defined as the minimum domain of the potential given by M := min
ϕ
V (ϕ), and
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irregularities of boundary conditions on M is what leads to the formation of topological

defects (and their associated signals). These defects have specific conditions for stability

which is characterized by homotopy classes of the symmetry group G. For the case where

the defects developed from phase transitions in the early universe, these signals allows us to

learn about the formation structure of the universe during early periods in its development.

The search for this signal becomes difficult when it is obscured by primordial noise coming

from cosmological perturbations. Specifically, we are interested in the case where the

symmetry group is G = U(1) and so the defects associated with a principal U(1)-bundle are

1-dimensional cosmic strings. These are useful as their mass energy density is proportional

to the symmetry-breaking energy scale and thus allows us to probe the structure at very

high energy scales in the early universe. In this case the noise which veils the signal comes

from cold dark matter perturbations in the ΛCDM model. In this paper we develop what

the cosmic string signal looks like in spacetime and develop statistics for extracting its

signal amidst the non-linear noise in 21cm observations.

2 Stability constraints of topological defects

Topological defects persist under continuous deformations of the manifold given certain

constraints of their homotopy groups. Such constraints are characterized by sequences

of injective maps which describe the symmetry breaking patterns associated with phase

transitions that create the defects. Additionally this gives us information on the stability

of the defect in a given quantum field theory which allow us to see what defects form after

a phase transition in the early universe.

2.1 Deformation classes via homotopy groups

To classify different topological defects, we must look at classes of topological space subsets

which are equivalent to each other under continuous deformations. These are are described

precisely with homotopy groups which are sequences of groups that generalize the funda-

mental group and record the topological information of the space. Additionally, if these

topological spaces are locally isomorphic to Euclidean space, and the transition functions

between its open subsets are smooth, they become manifolds. As an example of studying

the topology of a manifold via its homotopy group consider a 3-dimensional cycle which

cannot be trivially deformed into a point. This points to the existence of a singularity

and thus the manifold admits a non-trivial genus. These properties can be additionally

explored with height functions in Morse theory but for our purposes we stick to homotopy

classifications.

Depending on the system, one can have multiple phase transitions which lead to mul-

tiple topological defects that depend on the information of the previously formed ones.

These are known as composite defects and are characterized by sequences of symmetry

breaking. Defects occurring only after one symmetry break are known as singular defects.

Let’s start by considering a symmetry breaking pattern in which the underlying symmetry

group G reduces to a subgroup of itself H (usually its isotropy subgroup), which then

breaks to another subgroup and so forth. This is denoted by the following:
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G −→ H −→ . . . (2.1)

One finds such a symmetry breaking pattern in the Georgi-Glashow model [5], a pro-

posed model for a grand unified theory, in which the unified gauge group SU(5) sponta-

neously breaks into the symmetry group of the Standard Model:

SU(5) −→ SU(3)× SU(2)× U(1). (2.2)

During each step in the symmetry breaking pattern, we must verify stability conditions

on the defect to see whether or not the gauge theory admits them. To do so we define a

homeomorphism between the vacuum manifold M and its quotient space representation

G/H, written as M ≃ G/H. Formally, this can be understood as the set of all equivalence

classes of G, where two elements of a class differ by an element of H. In other words,

elements g ∈ G are mapped to the left cosets of H in G, given by {gh} where h ∈
H [4]. Thereafter, we look at the homotopy groups which characterize the topology of M .

Consider for example an equivalence class of maps which send points from an n-sphere Sn

to M , under the condition that a base point is preserved in the mapping. The equivalence

class of these maps are known as homotopy classes. Two maps f1, f2 within this class

are homotopically equivalent if they can be continuously deformed into one another via a

continuous 1-parameter family of maps f(t) which adhere to the conditions given by [6]:

f(t) : Sn →M | t ∈ [0, 1], f(0) = f1, f(1) = f2 (2.3)

The homotopy classes form a group structure known as the n-th homotopy group† of

the vacuum manifold M , denoted πn(M), which is the set of all homotopy classes of maps

fk : Sn →M [7] for k ∈ Z. The first homotopy group π1(M) is known as the fundamental

group of a manifold, and is the group of equivalence classes under homotopy of loops within

M ; that is to say the set of loops that can be continuously deformed into each other given

a 1-parameter family of maps. The non-triviality of this group gives rise to 1D line defects

known as cosmic strings. Furthermore, the second homotopy group π2(M) is the group

of homotopy classes of closed 2-dimensional surfaces in M [8]. The non-triviality of this

group gives rises to 0D defects known as monopoles. This intuition can be extended for

all n ≥ 1, which include defects such as 2D domain wall defects and 3D texture defects.

These topological defects can occur in quantum field theories such as the Wess-Zumino-

Witten model [9, 10] — a 2D conformal field theory used to describe superstring theory

on AdS3 × S3 — which appear on the worldsheet of physical strings. We now move on to

describing the stability of these topological defects based on constraints of their homotopy

groups.

2.2 Symmetry breaking as exact sequences

A theory admits a local/global topologically stable defect if the homotopy group is non-

trivial, meaning (for the case of the vacuum manifold M) it obeys the condition [11]:

†It is noted that πn(M) is a group only for n ≥ 1 and π0(M) is only a set.
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πn(M) ̸= 1l, n ∈ Z. (2.4)

In general, stability conditions are often more intricate than the statement above such

as for composite defects which deal with both the nature of the vacuum manifold, and the

symmetry group G.‡ The computations of these conditions on the homotopy groups are

derived efficiently from sequences of injective maps, known as exact sequences.

Consider a pair of maps f : A→ B, g : B → C which map between manifolds A,B,C.

The sequence A→ B → C coming from the map g ◦ f is exact if and only if the image of

f coincides with the kernel of g. This is visualized in the following figure:

Figure 1. Visualization of an exact sequence of functions mapping between various manifolds. The

shaded region within the manifold B represents the image of f , as well as the kernel of g [11].

For consideration of composite defects, we can consider a longer sequence of maps that

are exact at every intermediate point. To describe such for the vacuum manifold, consider

an injection map i from the homotopy group of H to the homotopy group of G and a

projective map p from the homotopy group of G to the homotopy group of M ≃ G/H.

These are defined respectively as:

i : πn(H) → πn(G)

p : πn(G) → πn(G/H).
(2.5)

This gives us a set of n-corresponding maps for our large exact sequence between

homotopy groups of the same degree n. We can further this by including sequences that

map between homotopy groups of different degrees via lifting homotopy group elements.

To do so, consider a fibre bundle composed of a base space G over the projected space

G/H. We can lift an element of π1(G/H) — a loop — living in G/H to a loop in G, and

being that the loop in the projected space returns to a starting point, the curve must end

at an element of H ⊂ G in the base space (which is true unless it admits a non-trivial

holonomy or geometric phase). This might seem unintuitive, but one could think of it in

reverse: if we identify the two endpoints of the curve in H via the modulo of G with H, the

two endpoints become the same point in G/H and so the curve must return to its starting

point. This is similar in principle to identifying the endpoints of a line to recover a circle

‡In this paper all symmetry groups are taken to be Lie groups, thus they are also endowed with the

structure of a manifold.
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which is done via a similar modulo map. The lift of a curve in the projected space to the

base space is visualized in the following figure:

Figure 2. Lifting a loop (red) from the projected space G/H to a curve (blue) in the base space G

via the inverse of the projective map p [11]. This can be seen as undoing the identification of the

starting and end points of the loop in G/H to give two separate points in G which end on H.

Moreover, if the final element of the curve in H belongs to the same component as

the identity in G, we can deform it continuously until the endpoints are themselves the

identity and the curve forms a loop in G. Each homotopy class of loops in G/H defines

a component of H, and in general we can define the lifting map ∂ between the homotopy

group of G/H to the homotopy group of H of one degree lower as:

∂ : πn(G/H) → πn−1(H) (2.6)

This gives us a map that sends homotopy groups to ones of a different degree. Using

the maps we defined to go between homotopy groups of different/same degrees, we can

construct a long exact sequence of alternating maps which terminates at the lowest degree

homotopy group π0(G/H). This is represented in the following:

· · · −→ π2(G) −→ π2(G/H) −→ π1(H) −→ π1(G) −→
π1(G/H) −→ π0(H) −→ π0(G) −→ π0(G/H)

(2.7)

How exactly does this exact sequence between different homotopy groups help us recover

stability conditions of topological defects? Using the requirement that the phase transitions

must form an exact sequence, we can impose certain conditions to reduce the sequence to

give us relations between homotopy groups [11]. These shortened exact sequences gives us

the precise relations to tell us if the topological defect associated with the homotopy group

is stable. Following this, we present some stability conditions for a few defects.

For a Lie group G which itself also has the structure of a manifold, it turns out that

the second homotopy group is always trivial, i.e. π2(G) = 1l. This means that the group

manifold itself will not admit defects such as monopoles. If the fundamental group of G

is non-trivial, meaning G is simply connected, we can replace G by its universal covering

group G̃. Finally, from the conditions previously mentioned, if we have a sequence structure
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that looks like 1l → A→ B → 1l then it follows that A and B are isomorphic (A ≃ B), and

the sequence reduces to the equivalence [11]:

π2(G/H) = π1(H̃) (2.8)

The above is the stability condition for a monopole, and states that the theory admits

topologically stable monopoles in the vacuum manifold G/H ≃ M if and only if the

universal covering of the subgroup H is non-simply connected. Furthermore, if we restrict

G to its connected part G0 and define the connected part of the subgroup H0 = H ∩ G0,

then sequence reduces to the equivalence:

π1(G/H) = π0(H̃0) (2.9)

The above is the stability condition for a cosmic string, and states that topologically

stable cosmic strings exist in M if and only if H̃0 has disconnected pieces. Thus in our

search for the cosmic string signal amidst the cosmological perturbation, we impose the

relation on symmetry groups we work with (in particular when G = U(1)) to ensure their

stability. Similar stability conditions may be derived for higher dimensional topological

defects — such as domain walls or textures — with conditions on their higher degree

homotopy groups. It is noted that for the stability conditions of composite defects, relative

homotopy groups are used such as πn(M,M ′) where M ′ has identical properties to M .

We now turn our attention specifically to cosmic string topological defects as they allow

us to probe the universe structure at very high energy scales. We begin by describing the

formation of cosmic strings from a specific scalar field symmetry breaking potential V (ϕ)

in the proceeding section.

3 Cosmic string defects

In this section we delve into the formulation of the cosmic string line defects which allow

us to probe the formation structure of the early universe at very high energy scales. We

begin with describing how they form via spontaneous symmetry breaking and follow with

some constraints on their properties such as how they can form loops. Finally, we look at

their signal in spacetime which takes the form of wakes they leave behind as they propagate

and how this may be observed in cosmic microwave background (CMB) as temperature

anisotropies via 21cm observations.

3.1 Formation via spontaneous symmetry breaking

Now for the purposes of this paper we shift our focus to 1D topological defects relating to

the fundamental group π1(M) of the vacuum manifold, known as cosmic strings. These

are formed from an inflationary phase transition in early universe between recombination

and reheating, and their signal persists to our current time due to these defects being

invariant under continuous deformations. Cosmic strings are of particular interest as their

mass energy density µ is quadratically proportional to the energy symmetry breaking scale
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η and thus allows us to probe particle physics models at very high energy scales relevant

to structure formation [12].

To model cosmic strings, we consider an Abelian theory where we take the G-bundle to

be a principal U(1)-bundle, meaning we no longer have to trace over the symmetry group

generators and so we replace tr(F ∧ ⋆F ) with F ∧ ⋆F in the action, and drop the spinor

terms in equation 1.1. Furthermore, we consider only the potential which depends uniquely

on the massless scalar field which is given by V (ϕ). With this we can write a simplified

action of this theory with a U(1)-phase symmetry ϕ→ eiβϕ as:

S = −1

2

∫
F ∧ ⋆F +

∫
d4y

[
1

2
(Dϕ)2 − V (ϕ)

]
(3.1)

Here the scalar potential is a symmetry breaking potential which takes the form V (ϕ) =
1
4g(ϕ

∗ϕ−η2)2, where g is the interaction coupling constant and η is the symmetry breaking

(energy) scale. What’s special about this potential is that when the system is above a

critical temperature Tc ∼ η we have a symmetric state with a global minima but below

this critical temperature this minima becomes a local maxima, meaning it is a false vacuum.

This makes the scalar field take a metastable antisymmetric state [13] and the false vacuum

decays via bubble nucleation. As the system cools below the critical temperature and

undergoes a phase transition, spontaneous symmetry breaking occurs whereby the system

obtains a symmetry not shared by its ground state, implying a degeneracy in the vacuum

observable ⟨ϕ⟩. The resulting potential is known as the Goldstone potential and has the

following shape:

Figure 3. Visualization of the symmetry breaking Goldstone potential V (ϕ) which forms after

cooling the system past the critical temperature Tc. The potential is defined over the complex

scalar field plane (also known as the parameter space of the field) and its minima, i.e. the vacuum

manifold, is a circle M ≃ S1 [11].

Using the framework of finite-temperature field theory, it can be derived that the

potential obtains a finite temperature correction during the phase transition in the form

of:

δVT =
1

2
ḡT 2|ϕ|2, (3.2)

where ḡ is the interaction coupling constant rescaled to absorb boundary conditions

on the variance of the scalar field, and T is the temperature of the system. The analogue

to this correction in a quantum field theory would be finite loop-order corrections from
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the interactions of spin-0 bosons. The degenerate vacua along the vacuum manifold S1 are

labelled by a phase angle α and the scalar field observable is given by [13]:

⟨ϕ⟩ = eiαη/
√
2 (3.3)

During the decay of the false vacuum, four bubbles† of positive surface tension nucleate

and their intersection form a point of energy in space [14]. By argument of continuity, we

require the scalar field to vanish within the closure of the vacuum manifold S1 [15]. At

center of the circle, known as the core, the field has to go through a central hump in the

potential and has a potential energy of the order O(T 4
c ). The energy outside this core

point quickly dissipates as the universe expands and so the energy is trapped within this

point [11]. Moreover, in theories such as the Abelian-Higgs model, we can have string

configurations which are translationally invariant, and thus this trapped energy occurs for

points immediately above and below the core. Connecting these points gives use a line

of trapped potential energy: the cosmic string topological defect. The process of forming

topological defects when a system is drive through a continuous phase transition at a finite

rate is known as the Kibble-Zurek mechanism [16]. The dynamics of these strings are given

by the Nambu-Goto action for bosonic strings in string theory, but unlike bosonic string

excitations in string theory, they don’t end on branes and cosmic string loops cannot be

excited to produce fields. Cosmic strings don’t have ends and don’t break, thus they either

occur in nature as infinite length strings (bounded by the event horizon of our expanding

universe), or as finite loops.

Cosmic strings are of interest as they possibly have significant effects on large-scale

density distributions and anisotropies in the CMB. Furthermore, we can contract the en-

ergy mass density with Newton’s gravitational constant to get a dimensionless quantity

Gµ known as the string tension, which will be crucial in cosmological observations and

computing upper limits at high energy scales. In the following section we look at some

conditions on the distribution and size of the strings based on a toy model of scalar fields.

3.2 Correlation lengths in spacetime

An important condition on the distribution of cosmic strings comes from its correlation

length which characterizes how correlated the phases of the cosmic strings are given sepa-

ration in spacetime. The formation of such topological defects A useful analogous model

for computing the correlation length between cosmic string phases would be a toy model

of a scalar field [6]. In this model we have a lattice of points where at each site a rod is

confined to a plane and is pivoted off the vertical axis by some angle of ϕ. The rods have

degrees of freedom that allows them to rotate and oscillate, and their tips are connected to

one another via springs. The kinetic spring term in their action is analogous to the exterior

covariant derivative term (Dϕ)2 in the cosmic string action. Furthermore, the potential

for the system V (ϕ) is modelled via Newtonian gravity with the angle ϕ ∈ [0, π/2] being

bounded by the first quadrant of the complex ϕ plane. Using these constraints, this model

†The nucleated bubbles themselves are domain wall topological defects which occur for non-trivial zeroth

degree homotopy groups of the vacuum manifold: π0(M) ̸= 1l.
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is analogous to the scalar field model with the interaction potential V (ϕ) = 1
4g(ϕ

∗ϕ− η2)2.

If we heat the system such that its temperature T is much greater than the critical tem-

perature Tc ∼ η, all rods undergo large amplitude and high frequency oscillations. Given

a large enough separation, their phases of oscillation become uncorrelated and this critical

length beyond which there lacks correlation is known as the correlation length ξ. It follows

by causality that there is an upper bound on the correlation length of the cosmic strings

which is given by [6]:

ξ(tc) < tc, (3.4)

where tc is the causal horizon length at the critical temperature Tc (recall that we are

using natural units). Analogously for the case of cosmic strings in spacetime, the boundaries

between correlated phases become 2D topological defects (domain walls) and thus after a

phase transition we will have a network of wall defects with mean separation of ξ(t) ≤ t, for

some horizon length t. Within these separated networks are cosmic strings with strongly

correlated phases, and this tells us that there are no correlations on scales larger than t

can be established, giving us a causal upper bound of the size of the network separations.

Additionally, these correlation lengths can be interpreted as the mean curvature radius

of string loops and separation lengths of long strings. Thus far we have information on

the stability conditions of the cosmic strings, as well as the conditions on their correlation

lengths past which they are uncorrelated. However, what about cosmic strings that are

formed in loops? What distribution of loops is found after a phase transition in the early

universe? We look at this in the following section and describe how cosmic string loops

form in the first place.

3.3 Formation of cosmic string loops

Recall that in the previous section with the use of a toy scalar field model, a phase tran-

sition in the early universe produces a network of long cosmic strings which persist with a

separation length of ξ(t). Cosmic string loops, however, with radii equal to the correlation

length will form after the phase transition via the intersection of two infinite length cosmic

strings by exchanging ends. Alternatively, a long cosmic string can have part of itself form

into a loop via self intersection and is visualized in the following figure:

Figure 4. Visualization of the formation of cosmic string loops via self intersection [6]. The radius

of curvature of the string before self intersection is given by its correlation length ξ(t), which then

becomes the radius R of the formed string loop.
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When formed, the cosmic string loops shrink via oscillation due to their string tension

and they decay gradually via gravitational radiation [6]. This means that their signal

vanishes with time after forming from a phase transition in the early universe. Furthermore,

it can be shown that as a consequence of the radius of curvature of the loops, the correlation

length of the string loop network is proportional to its causality limit:

ξ(t) ∼ t. (3.5)

From this estimate (as well as the upper limit estimate for long string networks) it

can be concluded that the fraction of the energy density of the total cosmic string network

ρ∞(t) to the background energy density ρb(t) is fixed and in fact is proportional to the

string tension [6]:

ρ∞(t)

ρb(t)
∼ Gµ. (3.6)

We see from above that the cosmic string network approaches what is known as a

scaling solution in which the statistical properties of the networks are independent of time

if all distances are scaled to the horizon distance t (alternatively known as the Hubble

length l). Alternatively, this can be interpreted as the distribution of cosmic strings being

scale invariant due to the rate at which cosmic strings form loops and lose energy. From

this it suffices in our model of cosmic string signals to populate a single cosmic string per

Hubble volume t3. In the following section we outline the precise signal of the cosmic string

to be detected which are temperature anisotropies in the CMB due to the wakes that the

strings leave behind when propagating in spacetime.

3.4 CMB anisotropies via cosmic string wakes

As cosmic strings propagate relativistically through spacetime, — which contains local

densities of plasma — much like boats in the sea they create wakes which give rise to

velocity perturbations. Being that the string has uniform tension and length energy density,

a gravitational lensing effect causes a conical structure to form in the space transverse to

the string [17]. We can unwrap this cone onto the plane parallel to the string and we are

left with the deficit angle of which the wake spans. The velocity perturbations coming from

the cosmic string wake can be observed in string’s rest frame whereby the ambient plasma

moves towards the back of the wake. This process is depicted in the following figure:

– 11 –



Figure 5. Visualization of a wake being formed in the plasma behind the string S. The left

subfigure shows the string wake propagating at some velocity v with the width of the wake given

by the deficit angle α. The right subfigure shows the same process in the rest frame of the cosmic

string where the velocity perturbations δv can be seen going towards the back of the wake [6].

The width of the wake is given by the deficit angle α = 8πGµ where Gµ is the

dimensionless string tension. As the string moves through plasma or a bath of dark matter,

the velocity perturbations it induces towards the back of the wake is given by:

δv = 4πGµvγ(v), (3.7)

where v is the velocity of the string and γ(v) = 1/
√
1− v2 is the associated relativistic

gamma factor. The velocity perturbations cause increased local densities of plasma in the

plane transverse to the string, known as planar overdensities, for times after the time of

equal matter and radiation teq. Now, how exactly do we extract a signal of the cosmic

string from its wake? The created wakes cause anisotropies to form in the cosmic mi-

crowave background temperature distribution. This is due to a Doppler shift which occurs

as radiation passes through different sides of the wake and so a change in temperature

occurs. This temperature variation is a direct consequence of the deficit angle and would

be negligible otherwise for a vanishing value of α. The temperature variation coming from

the Doppler shift is visualized in the following figure:

Figure 6. Visualization of CMB temperature anisotropy coming from the Doppler shift of radiation

(red) passing on different sides of the cosmic string wake as a consequence of the deficit angle (blue).

The resulting change in temperature is detected by an observer O [6].

Using finite temperature field theory, the temperature variation in the CMB caused

by the process (normalized by the ambient temperature) is given by the following relation:
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δT

T
∼ 8πGµvγ(v). (3.8)

We see that the normalized temperature anisotropy scales proportionally with the

velocity of the string and so we expect to see stronger signals of strings moving at relativistic

speeds. Now that we have conditions on the stability, distribution, and signal of the cosmic

string, we move onto modelling it in redshift space (which we will later see if for convenience)

where we can immerse it in primordial ΛCDM noise. From this we develop statistics to

enhance and extract the signal of the cosmic string, as well as what the domain in which

the string signal is bounded by is. The following section will delve into modelling cosmic

strings of finite lengths along with an alternate mechanism of anisotropy in the CMB.

Thereafter, we model the wake anisotropy signal in redshift space in Python and develop

statistical methods to extract it.

4 String wake signals in redshift space

In this section we describe the network of cosmic string wakes using a finite length model

and embed its topology in redshift space. We then develop statistics to extract its signal

among spatial fluctuations from primordial ΛCDM noise and define the domain by which

the signal is bounded.

4.1 Finite length wake model

For a network of cosmic strings we make use of the principal U(1)-bundle, consisting of the

gauge group U(1) over the Lorentzian 3+1D spacetime manifold M. We can consider de-

composing the spacetime by defining an equivalence relation over it, known as an foliation.

This is the set of equivalence classes of its submanifolds — known as leaves of the foliation

— which we select to be constant time slices, each indexed by the time coordinate t. These

3-dimensional spatial submanifolds, labelled as Mt, are in fact hypersurfaces and within

them the causal horizon distance is fixed by the index t. This tells us the correlation length

estimate for the cosmic string network and and so the distance between correlated cosmic

string phases (the interface of such correlations given by domain wall defects). Being that

these submanifolds are 3-dimensional, this means that a set of cosmic strings will have cor-

related phases in some volume t3. To make use of the scaling solution, we scale all distances

to the causal horizon length and due to such only populate one cosmic string per Hubble

volume t3. For this to work, we move from a network of infinite length cosmic strings to

a set of cosmic string segments of finite length. Each cosmic string segment which lives in

separate Hubble volumes and their corresponding wakes have the following dimensions:
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Figure 7. Visualization of a cosmic string wake immersed in the spatial submanifolds. These are

bounded by the size of the Hubble volume and so are modelled with a finite length [18].

Here c1 ∼ O(1) is a real constant of order unity, ti is the time of formation (taken to

be at recombination), vs is the velocity of the string and γs is the associated relativistic

gamma factor. The presence of this wake (which forms a wedge) causes distortions in

temperature distributions and can be seen in anisotropies of the CMB map through 21 cm

observations. As CMB radiation passes through the overdensities created by the wake, it

is eventually emitted via the excitation of hydrogen within the wake [6] in quantized 21

cm packets. If the wake temperature emitted is colder than the ambient CMB photons

coming from the surface of last scattering, then the wake absorbs the CMB radiation at

21 cm. If the wake temperature is hotter then it emits this 21 cm radiation. The string

segments which are formed near recombination are the most numerous and thickest and so

we focus on these set of strings. Although these segments will live for a Hubble time and

decay (via the production of loops), the wake signal persists to present time. As light is

emitted from the front and back of the wake (along the lightcone connecting the present

time to the time of formation of the cosmic string), there is a frequency shift δν between

the two emitted rays [12]. This can be translated into a brightness temperature variation

δTb, and is the characterization of the cosmic string (wake) signal, given by [19]:

δTb(ν) = [0.07K]
xc

1 + xc

(
1− Tγ

TK/g

) √
1 + z

2 sin2 θ
. (4.1)

Here xc is the collision coefficient, Tγ is the temperature of the CMB photons prior to

entering the gas cloud within the wake, TK/g is the kinetic temperature of the wake†, z is

the redshift, and θ is the angle off the line of sight from the observer to the wake. This

gives us a wedge in physical space — the constant time hypersurfaces Mt — and within

it a temperature gradient given by δTb(ν). Moreover, from another analysis done [19], it

is found that the wake signal is very narrow in the redshift direction. Thus, the cosmic

string signal is characterized by a wedge temperature gradient in physical space, that is

narrow in redshift space. This narrow feature will be useful in extracting the signal among

†The subscript is in reference if shock heating or incoherent gas thermal energy dominates, which

changes the amplitude of the signal.
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ambient fluctuations coming from primordial noise. In the following section we use this to

immerse the wedge in redshift space and begin the construction of the wake in Python.

4.2 Implementation of wake signal

Now that we have laid the foundations for the signal of the cosmic string wake in physical

space, we can begin its construction in Python for signal extraction. Consider a constant

timeslice of the spacetime, given by Mt, with a coordinate chart (x, y, z). In Mt we

consider a Hubble volume t3 centered at the origin of the physical coordinate system and

within it we populate a single cosmic string wake (wedge). We construct the wake from six

points following the dimensions given in the previous section. It is noted the deficit angle

in all future figures is exaggerated to show the nature of the wake, which would otherwise

look like a plane for actual values of the angle α. A wedge in physical space at some point

coordinate within a Hubble volume (granted its boundary does not intersect the edges of

the Hubble volume) will thus look like:

Figure 8. Visualisation of the cosmic string wedge in physical space bounded by the Hubble

volume. The length scale of the axes are in Mpc.

Upon formation during recombination, the cosmic string wakes wont necessarily occur

parallel to one of the axes of the coordinate system and so make the wake configuration

more arbitrary we apply random rotations about all three axes via the generators of the

SO(3) group. Following this, due to the redshift dependence of the brightness temperature

δTb(ν), we would like for our vertical z-axis (in Mpc) to be rescaled to a dimensionless

redshift axis, meaning we will work in redshift space. The scaling relation between distance

and redshift is implicitly found from the non-linear ODE solutions to Einstein’s equations

using an FRW cosmology. The integral is non-elementary and is without an analytic

solution, thus we proceed to generate the relationship numerically. This relation between

the two looks like:

– 15 –



Figure 9. Scaling relationship between redshift and distance in Mpc for an FRW cosmology. The

left subplot shows distance as a function of redshift, while the right subplot shows its inverse,

redshift as a function of distance.

Using this we can rescale the vertical physical axis to a redshift axis. Finally, to

model the wake in redshift space, we must take into account that in an expanding universe

physical coordinates dilate. Thus, to match cosmological observations, we convert from

physical coordinate to comoving coordinates via the relation on the cotangent bundle basis

of the spacetime: dxµphys = a(z) dxµcom. Here a(z) is the redshift-dependent scaling factor

for an expanding spacetime, dxµphys is a differential form in the physical cotangent basis, and

dxµcom is a differential form in the comoving cotangent basis. Using the scaling, dilation,

and rotation transformations mentioned above, we have our construction for a wake in

comoving-redshift space, which looks like:

Figure 10. Visualization of the wake wedge in comoving-redshift coordinates for an arbitrary

position and orientation.

Next, using complex convex hull sets, we can cover the wedge in simplices and test

whether points lie within the hull. Using a flooding technique, we fill the Hubble volume

with points and assign points within the wedge with the brightness temperature gradient

δTb(ν), which looks like:
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Figure 11. Visualization of points within the cosmic string wedge in comoving-redshift coordinates,

each with an assigned brightness temperature value given by the function δTb(ν). The left subfigure

is for the wake without scaling, dilation, and rotation transformations. The right subfigure is the

wake on the left after said transformations.

Now that we have our construction for the wake signal in comoving-redshift space as

a convex hull set of points — each with a defined temperature given δTb(ν) — we can

move onto including the noisy background onsent by cosmological ΛCDM perturbations

and look at statistics to extract the signal.

4.3 Signal extraction via match filtering maps

Before performing statistics which include a 3D noise map computed from simulations of

early universe formation (which in covered in the following section), we first look at 2-

dimensional case of immersing the wedge signal in a random noise map. This is to develop

the methods which will be used when including accurate simulation noise in 3D space. The

reduction to a 2D map is done via slices of the Hubble volume in Mt. To visualize this

slicing, consider the three following maps: a gradient map, a random noise map, and a line

map. Each of them are 3D cubes within the Hubble volume with different temperature

values on their surface. The gradient map has a temperature gradient on its surface (used

to mimic the signal of the cosmic string wake), the noise map has a random distribution

of temperature on its surface (used to mimic the primordial noise maps), and the line map

is just a line of constant maximal temperature on the edge of the cube. If we consider a

slice of these maps, we get the following figure:
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Figure 12. 2-dimensional slices along the vertical plane of example temperature maps along the

vertical plane. The left map is the a slice of the gradient map used to model the wake, the middle

is a a slice of a generic random noise map used to model the primordial fluctuations, and the right

is an example of a map with a distinct line geometry used to elaborate the statistical framework

which follows this figure.

If we superimposed these 2D maps, it would be very difficult to separate their individual

signals and so we chose to unfold the maps to get a 1D string of information. To do so,

we go along each row of the 2D map matrix (where each element of the matrix is a point

on the map with a corresponding brightness temperature) and append the information of

the individual points into a single array. We could also have done this process of unfolding

by going along each column, which would give us a vertically unfolded array. The different

directions of unfolding is important to take into account as it will modify the signal of the

different maps. After unfolding the 2D maps above horizontally and vertically, we have

the resulting figures:

Figure 13. Unfolded temperature matrix of the gradient and line maps. The left subplot shows

a horizontal unfolding where all the information of the 2D plot is unwrapped over some arbitrary

index range. We see that the line signal appears periodic while the gradient wake signal steadily

increases. The right subplot shows a vertical unfolding where the gradient signal is periodic and

the line signal is a single bump.

We exclude the different unfoldings of the 2D noise map and the structure unfolded

noise arrays are both equally chaotic and nothing is learned by them. We see that if
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we reduce the information of the 2D noise maps to a 1D array we can see the signal

of the individual maps, which change with the unfolding orientation. With this we can

superimpose the 2D maps and unfold them to extract the individual signals (the gradient

and line signals being obscured by the noise map) with the use of match filtering statistics.

Since we unfolded a 2D matrix, we can use the 1D definition of match filtering given by [18]:

s(t) =

n2/2∑
k=−n2/2

h[t− k]× d[k], (4.2)

where s is the match filter amplitude for some index t which tells us if there is a

signal in the array we input, h the array of the signal we wish to extract (in our case

will be the wake gradient map in a vacuum), and d is the data array which is the wake

gradient map immersed in the noise map. Here we see match filtering is simply a discrete

convolution which sums up the values at different index separations, which is a statistic that

is particularly good at maximizing the signal to noise ratio. The match filter amplitude is

a tool used to see if given a data set in the form of an array contains signals that aren’t just

random fluctuations coming from noise. Using the definition of match filtering above, we

compute the match filters for the different data samples in different unfolding orientations:

Figure 14. 1D match filtering for different data maps in various unfolding orientations. The left

subplot shows the result of a match filter between different example maps after they are horizontally

unfolded. The right subplot shows the result of a match filter between different example maps after

they are vertically unfolded.

What does this mean? Consider the Gradient-Gradient curve in the left subplot. This

curve tells us if given an array of the unfolded gradient map, what are the chances it is

a gradient map? Being that the chance is 100%, we end up with a peak in the match

filter. This is the ideal case where we look for the wake in a vacuum and find it. The

Gradient-Noise curve tells us if given an array of the gradient map obscured by noise, what

are the chances of finding the wake signal? We see that the resulting curve is still a peak

and does indeed tell us there is a cosmic string wake signal within the noise. Finally, the

Gradient-Line curve, this tells us the chances of finding a gradient map from a line map,

which is very minimal. The right subplot is the same but for a vertical unfolding. In both
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cases, we see observation of a wake in a background noise will have an amplitude that is

bounded by the blue and purple curves; the blue curve is the case where the wake is in a

vacuum and the magenta curve is the wake in noise.

Now what if we never unfolded the maps to begin with and just used a 2D match filter

on the example maps? To do so we generalize the match filter definition in equation 4.2 to

include matrices and are left with the following output:

Figure 15. 2D match filtering for different data maps.

As can be seen above, the difference between the pure gradient-gradient match filter

with the gradient-noise match filter is more nuance than the 1D case. This might not

seem like the case, and so to elaborate this point further, we can unfold the 2D array after

computing the 2D match filter in different orientations and compare the amplitudes. This

results in the following figure:

Figure 16. 2D match filter array for different data maps which is unfolded in different orientations.

The left plot is for a match filter matrix that has been unfolded horizontally while the right plot is

for vertical unfolding.

As can be seen above the cosmic string signal is again bounded by the blue and magenta

curves, although this time their difference is much smaller than the 1D case. This makes

it more difficult to confirm if a cosmic string wake is detected in a given data set map, and

so we will proceed with 1D match filtering. To get some sense of what the actual cosmic
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string wake signal will look like using 2D slices of its convex temperature hull, we use the

1D match filter between the string wake in physical-redshift space with the random noise

map (normalized between 0 and 1), to produce the following plot:

Figure 17. 1D match filtering using the information of the actual string wake gradient map. The

top subfigure is the string wake gradient map convolved with itself while the bottom figure is the

string map convolved with the string map immersed in random noise.

As can be seen above, there is a large difference is amplitude between the amplitudes

of the match filter between a pure string gradient to string gradient filter versus a filter

of a string map with a string map obscured by noise. Now that we have developed the

formalism to extract the string signal obscured by noise, in the following section we move

onto including the full 3D information of the cosmic string gradient map, as well as the 3D

primordial ΛCDM noise map.

4.4 Match filtering along lines of sight

Now, we utilize the full 3-dimensional information of the cosmic string signal (with tension

Gµ ∼ 3× 10−7), as well as the primordial noise occurring in the early universe. We begin

by superimposing the 3D wake signal map with the 3D ΛCDM noise map to perform match

filters along different slices ofMt. First, we consider a ΛCDM noise map for a 200×200×200

Mpc comoving box that is computed through 21cmFAST, a package used for computing

cosmological simulations of physical fields in the early universe [20]. Furthermore, to match

the size of our wedge map with the noise map, we choose a 29 × 29 × 29 Mpc section of

the larger comoving box. Within this noise map, for each redshift we may slice along

the xy-plane to consider different lines of sight, and perform statistics on each slice. For

the sake of demonstration we consider the 9th, 10th, and 11th slice of the 29 Mpc slices

(respectively at redshifts 1,2,3). The slices for the 3D noise maps look like the following:
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Figure 18. Line of sight slices of the ΛCDM primordial noise map, with dimensions of 29 × 29

Mpc.

Moreover, we can also pick the same index slices for our wake map, which looks like

the following:

Figure 19. Line of sight slices of the string wake temperature map, with dimensions 29× 29 Mpc.

It is noted due to the small length scale, the temperature of the wake appears to be uniform in

temperature but there are in fact small temperature variations given by the brightness temperature

δTb(ν). These will be our model parameters h which we convolve other maps with, as seen in

equation 4.2.

Finally, we can superimpose the signal map of the cosmic string wake with the pri-

mordial noise map to get the following line of sight slices:

Figure 20. Line of sight slices of the combined string wake temperature and ΛCDM cosmological

perturbation maps, with dimensions 29× 29 Mpc.

From the above figure, we can see that at the string tension we are considering (Gµ ∼
3×10−7), the string signal is visible by eye. The match filter statistics are thus useful when

modulating the string tension, and the signal to noise ratio becomes suppressed, meaning

it can no longer be seen by looking at the signal map embedded in noise. As before we

perform match filtering convolutions to extract the signal from the combined maps. The

following plots are the result of 2D match filters between the different maps:
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Figure 21. Result of 2D match filters of the different maps. The left most subplot is the result of

a match filter between the gradient map with itself, the middle subplot is the wake signal convolved

with the noise map, and the right most plot is the wake signal convolved wake signal map obscured

by noise.

As can be seen from above, the match filter between the wake map and the wake map

obscured by noise creates a peak within the 2D parameter space near the center where the

wake is located. This shows us directly what the wake signal looks like if we are looking

for a cosmic string signal in space. To get precise information on the domain which bounds

the cosmic string signal (when including primordial noise), we unfold these match filter

maps into a 1D array and plot the temperatures. This looks like the following figure:

Figure 22. Unfolding of the 2D match filter maps. The different curves represent the unfolded

match filter amplitude between the wake signal map and the various other maps. The left subplot

if for a horizontal unfolding of the 2D match filter maps, while the right subplot is for a vertical

unfolding.

We see that the signal of a string wake in a vacuum is has the most prominent peak in

blue, closely followed by the signal of a string wake in a noisy background in green. This

means we expect the signal of a string wake in cosmological observations to be bounded

by the blue and green curves. Explicitly, the domain of the string signal (meaning the

different values of the match filter amplitude which bounds it) would be between 0.0125

and 0.025, in both unfolding orientations. We can have a larger bounding domain if we

unfold the noise and wake maps before performing a match filter. Consider unfolding the

two maps before performing a math filter, which looks like the following:
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Figure 23. Unfolding of the 2D wake gradient map and the wake gradient map obscured by

noise. The left subplot is a horizontal unfolding of the maps while the right subplot is for a vertical

unfolding.

With the preceding unfolded maps, we can perform a 1D match filter to test the signal

of the wake either in a vacuum or noisy background. The result of the 1D match filter is

visualized in the following figure:

Figure 24. Results of the 1D match filters after having been first unfolded. The different curves

represent the match filter amplitude between the wake signal map and the various other maps. The

left subplot if for a horizontal unfolding of the 2D match filter maps, while the right subplot is for

a vertical unfolding.

As can be seen from above, the signal of the wake in a vacuum has a much higher

amplitude compared to the noise as in the 2D case. The difference between the amplitudes

of a wake signal in a vacuum versus its signal in noise is much more prominent had we

convolved the original 2D maps before unfolding them. Explicitly, the domain of the

string signal in this case is between 0.010 and 0.035, in both unfolding orientations. This

demonstrates a model in which we can employ statistics to able to extract the cosmic string

wake signal from a noisy cosmological perturbation background map.
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5 Caveats

It is worth mentioning some caveats of the analysis done above. First, the method in which

points are detected within the wake is done using complex convex hulls. This algorithm

becomes problematic when the blown up deficit angle is replaced by its actual value of

α = 8πGµ which is very small and thus the wake becomes a plane. The algorithm is based

on connecting simplices along different vertices and does not work when the topology of

the object is in 1D. Next, when converting from physical to comoving coordinates, one

uses an inverse scaling factor of the form a−1(z) = (1− z)/z, which can also be substituted

for a−1(t0) ∼ 103 for current observations. This scaling relation becomes an issue when

wanting to scale physical axes to redshift axes using the numerical function from the astropy

Python package, which doesn’t converge for small or values of redshift, respectively given

by the orders O(1) and O(1000). Thus, we are left with to work in a snapshot of physical

coordinates to substitute for a continuous comoving coordinate system.

6 Conclusion

In this paper we developed a model and algorithm for extracting the signal of a U(1)

topological defect (cosmic string) within a noisy cosmological perturbation background.

We focused our attention to cosmic strings and looked at the construction of their wake

in physical-redshift space. We developed statistics for extracting the cosmic string signal

from a noisy background using match filtering, a convolutional statistic which maximizes

the signal to noise ratio. It is found in the regime Gµ ∼ 3 × 10−7 that a 1D match filter

after unfolding the temperature matrix into an array shows a clear indication for what a

string signal observation looks like. We also demonstrate the domain in which the string

signal is bounded by. It is from this we conclude that given a data sample we know what

domain to look for the cosmic string signal and how to extract it from fluctuation noise.
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