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We consider the logistics behind photon propulsion from continuously reflecting light in a semi-
connected cavity payload, known as photon recycling. We investigate the effects of light interference
on the radiation pressure by modelling light as a massless scalar field φ, and taking the interaction
between light and the mirror to be a perturbative, coupled interaction in the Lagrangian density.
We characterize the interference of light with an emphasis on a Feynman diagram approach with
1-loop diagrams and also look at other corrections to the radiation pressure arising from QFT such
as the interaction of light at lowest loop level, and the static and dynamical Casimir effect. We
consider the cases where the mirror boundary conditions are stationary and dynamic separately. It
is found that compared to the macroscopic radiation pressure, the effects of the interference of light
are suppressed by the prefactor with O(L−4), where L is the initial separation of the mirrors in the
cavity. Moreover, we visualize this result for imperfect and perfectly reflecting mirrors over a range
of reflectivities and initial cavity separations.

I. INTRODUCTION

The inefficiency of propulsion from combustion rockets
leaves much to be desired when contemplating interstel-
lar travel. An attractive alternative is the use of radiation
pressure to accelerate payloads being made from reflec-
tive boundary conditions (BCs) such as light sails. Using
directed radiation from a laser source to a light sail for
example is inefficient as the energy conversion from the
pressure to the spacecraft is inversely proportional to the
spacecraft’s velocity [1]. A potential fix to this problem is
by having the light emitted from the laser reflect multiple
times in a semi-connected resonant cavity or optical res-
onator. This is formed by reflective BCs, i.e., a partially
transmitting mirror and a concave set of reflecting mir-
rors acting as the payload [2], which is known as photon
recycling. This is visualized in Fig. 1. With every bounce
the light imparts energy onto the mirror as it reflects off
of in the form of momentum and redshifts accordingly,
thus inducing propulsion on the payload. This process
continues until all the energy is dissipated in the form of
propulsion and gravitational energy due to the expansion
of spacetime. The top and bottom mirrors of the payload
do not contribute to the propulsion and neither does the
radiation outside the semi-connected cavity, so we equiva-
lently model the system as two mirrors initially separated
by a distance L, with the gauge field propagating only
within the two mirrors. Although the distance changes
between the mirrors, for simplicity we refer to the two
mirrors as the cavity of the system. One proposal con-
sidering photon recycling uses a fixed and unfixed mirror,
treating photons as massless particles, and demonstrates
theoretically with four-momentum conservation that a
gram-scale spacecraft can be accelerated up to 0.2c [3].
The paper accounts for the Doppler shift when photons
bounce back and impart energy, as well as the efficiency of
said transfer but completely neglects the quantum nature
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of photons. This includes reflected photons interacting
with incoming photons via loop-level interactions, inter-
ference, and the radiation emitted by a moving mirror
in spacetime. Another consideration for photon propul-
sion uses a cavity with an internal boundary composed
of highly reflective (HR) mirrors and demonstrates with
optomechanics the possibility of accelerating the space-
craft. An interesting difference between the two papers
is that the author of the latter claims that in a passive
cavity composed of two HR mirrors, the incident and re-
flected beams of light within the cavity will interfere with
each other destructively and resultingly impart negligi-
ble momentum onto the spacecraft [4]. Moreover, they
suggest the fix to this is using an active gain medium
in the optical cavity. The medium receives energy from
an external source via laser pumping, and transfers part
of its energy to the radiation as it passes through [5].
This is done through the stimulated emissions of pho-
tons as radiation imparts energy on confined electrons
and they transition to a lower energy state. The author
does not elaborate on this claim or show any theoret-
ical computations to back it up. The different conclu-
sions on from both approaches raises the main inquiry
of interest in this paper: how much does interference
between the incident and reflected beams affect the ra-
diation pressure on the moving mirror? Being that the
radiation pressure creates the propulsion of the mirror,
the explicit computation of the effects of interference on
the radiation pressure would naturally tell us how much
the propulsion if affected. To answer this, we first focus
on the case of stationary boundary conditions where the
mirrors do not move, and compute contributions to the
propulsion of the mirror from the radiation pressure and
interference in the context of the Casimir effect. This
approach is done using quantized scalar fields φ to de-
scribe light where the interaction between light and the
mirror is modelled with perturbative coupled interaction
vertices and Feynman diagrams. We then move on to the
case where one mirror is moving relativistically and thus
have a non-stationary boundary condition. We compute
analogous contributions to the force exerted on the mir-
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ror, with the addition of radiation coming from moving
mirrors in spacetime. This paper assumes knowledge of
quantum field theory, statistical mechanics, and complex
analysis. For a review of QFT and QED, the reader is
recommended to look at chapter 2 and 4, respectively, of
Peskin & Schroeder’s textbook on QFT [6].

FIG. 1. Schematic of the semi-connected resonant cavity pay-
load. Each mirror has an associated reflection coefficient, po-
sition, and if applicable, a transmittance coefficient. The laser
source on the left J(t) transmits light through the discon-
nected left mirror and reflects back and forth in the cavity to
accelerate the cavity payload. Light is modelled as a gauge
field Aµ.

II. STATIONARY BOUNDARY CONDITIONS

In this section we look at the different contributions or
corrections that affect the radiation pressure, and hence
propulsion, within the cavity formed by the mirrors with
static BCs. This includes the radiation pressure from
light within the cavity, the attractive Casimir force be-
tween the neutral plates, and the contributions from in-
terference and scattering of light.

A. QFT & Massless Scalar Fields

Normally when dealing with radiation pressure and
electromagnetic energy densities it is standard to use the
principal U(1)-bundle in which case a Yang-Mills theory
reduces to that of an electromagnetic theory, with the
standard fiber being the complex line C for a local trivi-
alization ϕ. The theory describes light in terms of oscil-
latory electromagnetic fields which is appropriate for de-
scribing systems with macroscopic separations and long
wavelengths, however disregards quantum effects seen in
quantum theory or QED. Moreover, when using such a
description, there is no well-defined prescription when
dealing with both the wave-like and particle-like nature
of light simultaneously, which is the main discrepancy
between the approaches for photon recycling reviewed in
the introduction. To avoid these issues, we use a scalar
field description of light where it is neither a wave nor a

particle, it is rather a quantum object with certain prop-
erties and allowed interactions. This follows from the
framework following the context of QFT, in which light is
an excitation of a product vacuum Fock state |0⟩. More-
over, the field theoretic approach is utilized to account
for light interaction vertices not present in classical elec-
trodynamics, as well as the fluctuation of quantum fields
& the creation of particles from a relativistically mov-
ing mirrors in the Casimir and dynamical Casimir effect
(DCE), respectively. This is important as at the length
and energy scales where interference is considered, effects
such as the DCE become relevant.
In QED, we describe fermions as spin-1/2 particles

with spinor representations ψ and Grassmanian algebra,
while photons are described as spin-1 bosons with vec-
tor/gauge field representations Aµ. The interaction be-
tween the two is encoded in the Lagrangian (omitting
counter terms):

L = ψ̄(i/∂ −m)ψ − 1

4
FµνF

µν − eψ̄ /Aψ. (1)

Here, m is the fermion mass, Fµν are the components of
the curvature 2-form, known as the field strength tensor,
and e is the electron charge used as the coupling constant.
The gauge field within the contraction /A = γµAµ is used
as the connection in local coordinates Dµ = ∂µ + ieAµ.
For the purposes of the our analyses where the radiation
pressure is incident on the parallel BCs, the polariza-
tion information within the gauge fields is not a concern.
The case of the polarizations can be treated separately
where they decouple and cancel the contributions of a
mass correction from massless scalar fields [7]. We can
alternatively treat the components of the gauge fields as
massless scalar fields φ, and since we have two polar-
izations present in the spacetime components, we have
two copies of the massless scalar fields. In this case, we
can write the gauge field as the derivative of a scalar
field Aµ = ∂µφ and replacing the derivative with just the
scalar field itself leaves us with Yukawa theory:

L = ψ̄(i/∂ −m)ψ +
1

2
∂µφ∂

µφ− gψ̄ψφ. (2)

This describes the interaction between spin-1/2 fermions
and spin-0 scalar bosons. For the purposes of our anal-
yses, we will only deal with the massless scalar fields to
describe the radiation within the cavity φ and do not
deal with fermions.
Moreover we note we will be working in natural units

where c = ℏ = kB = 1, and utilize the metric signature
ηµν = diag(−1, 1, 1, 1).

B. Radiation Pressure From Scalar Fields

In this section we consider the radiation pressure on
stationary, parallel boundary conditions (mirrors) using
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quantized, massless scalar fields. One approach to this
computation is the use of influence functionals described
with path integrals [8]. In this approach, the mirrors
are described with reduced density matrices with har-
monic potentials centered on their potential, and the ra-
diation is described with scalar fields that interact with
the potentials via a perturbative, effective action term.
They, however, do not deal with the case where the mir-
ror moves a significant distance relativistically. Another
approach quantizes the fluctuations of the scalar fields
about a minimum such that it satisfies Dirichlet BCs,
meaning it vanishes on the surfaces of the mirror, emu-
lating the reflection properties of the mirrors. The per-
turbative action term acts as a description of the mir-
rors moving a differential amount and is used along with
the BCs to derive an expression of the movement of the
scalar fields. This is used to compute the amplitude of a
motion induced energy density from the stress tensor in
Euclidean space, and the radiation pressure is computed
by taking the average over the field states [7]. Again, this
is only for the case in which the mirrors move a differ-
ential amount in an oscillatory manner. Here, we briefly
present a model for determining the photon pressure on
the mirrors by considering the internal and mechanical
degrees of freedom (DOF) of a moveable mirror in 1+1
D [9]. We then in later sections compare this result to
change in pressure by interference affects it to see if it is
significant.

The key property of a mirror is its reflective properties
where the amplitude of the field vanishes at the bound-
ary. The mirrors center of mass motion is treated like
a massive particle of mass M with position coordinates
z(t) and the reflectivity is taken to be an internal DOF
q(t) which is modelled as a SHO of massm and frequency
Ω. This DOF is coupled to the field via the action func-
tional:

S[φ, q] =
1

2

∫
d2x ∂µφ∂

µφ +

∫
dt
[ m

2
(q̇2 − Ω2q2)

+ λqφ(t, 0)
]
.

(3)

Here λ is the renormalized coupling constant that is much
smaller than unity to allow for perturbation theory. The
associated EOM are found through varying the action
and give:

−∂2t φ+ ∂2xφ = λqδ(x)

mq̈ +mΩ2q = λφ(t, 0).
(4)

Now, consider the cavity formed by these two mir-
rors with one fixed and one moving (although this sec-
tion considers stationary BCs, we are in the limit where
δz(t) ≪ L) with the perfect reflection condition being the
Dirichlet BC φ(t, 0) = 0. We take the reflectivity of the
second mirror only to be partial, thus allowing for the
presence of an external source J(xµ; ΩD) = A cosΩDt,

where the frequency of the external pump is ΩD. The
Lagrangian for such a system is of the form:

L =
1

2
[∂µφ∂

µφ+ 2J(xµ)φ+m(q̇2 − Ω2q2)

+M(ż2 − Ω0
2z2) + 2λqφ(t, L+ z(t))].

(5)

Using coordinates x = L + z(t) and the fact that the
mirror moves through a harmonic potential of natural
frequency Ω0, we have the associated EOM:

−∂2t φ+ ∂2xφ = J(xµ) + λqδ(x− L− z(t))

q̈ +Ω2q =
λ

m
φ(t, L+ z(t))

z̈ +Ω2
0z =

λ

M
q∂xφ(t, L+ z).

(6)

From these EOM, the differential equation for z(t) can
be isolated and modelled as a damped, forced harmonic
oscillator. We can then consider the mirror cooling with
motion in the weak interaction limit λ2/(mΩ3) ≪ 1, as
well as the geometric condition Ω,ΩD ≫ Ω0. This allows
us to then time average over the mirror’s EOM and get:

Mz̈ + Γ(L)ż +M(Ω2
0 − δΩ2(L))z = F (L), (7)

where Γ is the damping coefficient, F (L) is the radiation
pressure, and δΩ is the frequency shift. The explicit form
of the radiation pressure is given by:

F (L) = λ2αD̃(ΩD)(α′∗ +
λ2

2
α∗D̃∗(ΩD)e−i2ΩDL). (8)

Here α = A(eiΩDL−1)/2Ω2
D, α′ = ∂ΩD

α are oscillatory

functions, and D̃(ΩD) is the Fourier transform of the
kernel of the DOF q(t):

D̃(ΩD) =
ΩD

2mΩD(ΩD
2 − Ω2) + iλ2(1− e2iΩDL)

. (9)

The expression for the radiation pressure in the cavity
of the perturbed mirror will be a source of interest when
comparing the order of magnitude to the force fluctuation
due to interference, covered in the next section.

C. Casimir Effect & Interference

The fluctuation of scalar fields gives rise to a force on
macroscopic boundaries, such as the Casimir force for
neutral, parallel, metal plates in a vacuum. In this sec-
tion, we look at the derivation of the force using Feynman
diagrams to develop an intuition of how interference af-
fects the pressure.
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Consider a massless scalar field theory with a quadratic
spatially dependent interaction of the form µ2φ2θ(z).
The Lagrangian density has the form:

L =
1

2
∂µφ∂

µφ− µ2φ2θ(z), (10)

where the spatial function coupled to the interaction has

the form θ(z) = −i
∫
dkz

eikzz

kz−iε . We note that due to our
convention for the metric, the usual signs of the imagi-
nary units in the propagator are flipped to adhere to the
iε prescription. This gives rise to an interaction vertex
of the form:

FIG. 2. Quadratic interaction vertex (gray dot) with a single
momentum coming in and going out. The contribution of this
vertex is shown in the image.

Now, consider a slab of metal centered at z = 0 ex-
tending to infinity in the xy plane. For z < 0, we say the
field is massless, while for z > 0, the interaction modi-
fies its dispersion relation. Consider a field φ coming in
from the right with momentum k0 and at some height
above exits the mirror with momentum k′. Note that
the height of the field does not actually increase, this is
just to visualize the reflection. In z > 0, the paths are
connected by various interaction vertices. The full path
propagating from the left, connecting to interaction ver-
tices and leaving towards the left will be our description
of the field reflecting off the mirror:

FIG. 3. Feynman diagram of photons reflecting off of a mir-
ror centered at z = 0, described with connected interaction
vertices on the right side of the mirror.

At each vertex, only k⊥ along the x̂-direction is con-
served and not kz, as we can have such connected paths

that change direction instantly which clearly do not con-
serve momentum along the ẑ-direction. This means that
all the momenta connecting the interaction vertices for
z > 0 are undetermined and are integrated over. We
write down the amplitude for this diagram using Feyn-
man rules analogous to φ4 theory:

iM =
1

S̄

∫
d2k1d

2k2d
2k3

(2π)8
−iµ2

(k1 − k0)− iε

i

k21 − ω2
1 − iε

× −iµ2

(k2 − k1)− iε

i

k22 − ω2
2 − iε

−iµ2

(k3 − k2)− iε

× i

k23 − ω2
3 − iε

−iµ2

(k′ − k3)− iε
ei(k0z0−k′z′).

(11)

Here S̄ is the symmetry factor of the diagram. We pro-
ceed with external leg amputation to avoid tree-level di-
vergences for external lines in z < 0 and take all momenta
in z > 0 to be on shell. This gets rid of the exponential
term at the end of the diagram amplitude.
Now, we can compute the integrals with Feynman pa-

rameterization but we instead make use of residue theo-
rem:

∮
γ

dzf(z) = 2iπ
∑
k

Res(f, zk). (12)

We first look at the k1 complex plane, and note that
there are fewer poles in the upper half of the complex
plane so we close the contour in the upper half of the
complex plane with a semicircular contour. The poles
are depicted in the following figure:

FIG. 4. Complex k1 plane with the corresponding poles of
the diagram’s amplitude represented by blue dots.

One of the residues for example has the form:

Resf(k0) =∂k1

[
1

(k1 + k0 − iε)(k2 − k1− iϵ)

]∣∣∣∣∣
k1=k0

∼ 1

(k0 − k2)k0
.

(13)

It follows from Jordan’s lemma that the function
parametrized to the semi-circle of radius R vanishes as
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R→ ∞, so we are just left with integration over the real
line. Repeating this for all poles within the contour, we
end up with a function of the form:

iM =
1

2kz
f

(
µ2

k2z

)
. (14)

Note: f
(

µ2

k2
z

)
is the exact form of the reflection coefficient

R, so the diagram contribution is the reflectivity of the
mirror.

Now consider two mirrors spatially separated along the
z-axis. The Lagrangian density now takes the form:

L =
1

2
∂µφ∂

µφ− φ2[µ2
LθL(z) + µ2

RθR(z)]. (15)

The diagram is depicted in the following figure:

FIG. 5. Feynman diagram of light bouncing off both mirrors,
represented with interaction vertices outside the mirrors. The
length of the cavity that the mirrors form is L. The Feynman
diagram going through both mirrors (in blue) is referred to
as the diagram D.

We would like to compute the vacuum energy between
the plates to recover the force, without the contribution
of the mirror’s individual self-energies. This is done un-
der the temporal-spatial limit L, T → ∞ for the vacuum
energy ε:

ε = lim
L,T→∞

− 1

LT
logZ, Z =

∫
Dφe−S[φ]. (16)

Here, Z is the continuous limit of the partition function in
Euclidean space. We can relate it to the Z[J ] functional
for interacting theories in QFT by first applying a Wick
rotation to be in imaginary time, and then adding an
additional term to the interacting Lagrangian in the form
of an external source J :

Z →
∮

DφeiS[φ] → Z[J ] =

∫
Dφei

∫
d4z[L0+Jφ]. (17)

Now, a general diagram D is composed of many interior
connected diagrams Ci. We can write D as D =

∏
i
Cni

ni!
,

where ni counts the number of times Ci appears in D,
and 1

ni!
is the symmetry factor corresponding to the con-

nected diagrams Ci. We can express Z[J ] as the sum of
all general diagrams D:

Z[J ] ∝
∑
{ni}

D =
∑
{ni}

(∏
i

Cni

ni!

)
=
∏
i

∑
{ni}

Cni

ni!

=
∏
i

exp(Ci) = exp

(∑
i

Ci

)
.

(18)

We see that Z is the exponential of the sum of all con-
nected diagrams, so logZ in ε takes the amplitudes of
the connected diagrams and kills off any disconnected
diagrams. We denote the two mirror diagram D, which
is composed of various connected diagrams with the in-
teraction vertex.
Now for a single diagram D with N interaction ver-

tices, we can rotate it N different ways and leave it in-
variant so the symmetry factor is S̄ = N :

FIG. 6. Feynman diagram going through both mirrors, dia-
gram D, represented in a simpler form of just a circle. The
N interaction vertices are visualized with grey dots. The idea
is that rotating this diagram leaves it invariant so there is a
symmetry factor associated with it.

For a pair of two D diagrams, we can swap them and
leave the amplitude invariant so the symmetry factor is
S̄ = 2:

FIG. 7. A set of two D diagrams that are invariant under
swapping the individual D diagrams. This means it has an
associated symmetry factor.

We can expand logZ in terms of the D diagrams as:

logZ ∼ 1 +
d1
N
D +

(d2)
2

2N
D2 + . . . (19)
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HereDj refers to j D-diagrams, so the case we saw before
with two corresponds toD2. Moreover, dj are simply real
coefficients in the expansion. If we sum up all the con-
tributions of the diagrams, in the temporal-spatial limit,
only the diagram D survives. Now, looking at the figure
for the two mirror diagram, we take the contributions of
µL, µR, the two propagators and external legs, we get:

iM ∼
∫
dk′z
2π

dkz
2π

dkxdkydωE

(2π)3
µLµRe

iL(kz−k′z)

(k2z + k2x + k2y + ω2
e )

× 1

(k′2z + k2x + k2y + ω2
e )
.

(20)

After computing the residues, it follows:

iM ∼
∫
dkxdkzdωE

(2π)3
µL

2kz

µR

2kz
e−2L

√
k2
x+k2

y+ω2
e

=

∫
d3k

(2π)3
RLRRe

−2L
√
k2
.

(21)

Here k2 = kµkµ = −k20+ k⃗2. From this we get the energy
by computing the integration in spherical coordinates.
We then recover the force by taking the negative spatial
gradient with respect to the initial length of the cavity.
This gives the following expression:

F (L) = −3RRRL

16π2L4
. (22)

Note the negative sign in front tells us that this force is
attractive between the mirrors in the cavity. This repre-
sents the contribution of the force without the effects of
interference.

Now, we must consider the many reflections that occur
between the mirrors and characterize the interference of
the photons as a multiple scattering series. An example
of such a reflection diagram is:

FIG. 8. Feynman diagram of interference, represented by light
bouncing back and forth between mirrors.

It follows that our original two mirror D diagram is
the first term in the scattering series, and we also have
for example diagrams corresponding to 3 and 6 , respec-
tively:

FIG. 9. Feynman diagrams representing three and six reflec-
tions off of the mirrors, respectively.

For example, looking at the three reflection diagram,
we see two nodes on the right. These nodes can be cycli-
cally swapped without the amplitude changing, so we
associate a symmetry factor of S̄ = 2. In general, for
every n nodes corresponding to 2n reflections, the reflec-
tion diagram has a symmetry factor of S̄ = n. We may
now write all of the new contributions to logZ in terms
of the reflection diagrams:

logZ →1

2

∫
ω,kx,ky

RLRRe
L
√
... +

1

2 · 2

∫
ω,kx,ky

( )2

+
1

2 · 3

∫
ω,kx,ky

( )3 + . . .

(23)

We see that the effect of interference changes the original
integrand to log (1- integrand). Finally, now that we
have our full expression for logZ, we compute the force
by differentiating the energy with respect to the distance
between the mirrors:

F (L) = − dε

dL
= −1

2

∫
d

dL
log(1−RRRLe

−2L
√
k2
). (24)

This is the Lifshitz formula for the Casimir force between
two mirrors in a vacuum. For perfectly reflecting mirrors
such that Rj = −1, then the energy and force per unit
area reduces to:

ε = − π

1440L3
=⇒ F (L) = − π2

480L4
. (25)

This gives us our desired result of how interference affects
the force on mirrors by the interference of the radiation
pressure. This is seen between the two expressions for the
contributions of the force, Eq. 22, and Eq. 25. We see the
only difference is a slight increase in the prefactor from
∼ 0.019 to ∼ 0.021. Moreover, we see compared to the
macroscopic force of the radiation pressure on the mirrors
given by Eq. 8, the effect of interference is negligible.
Eq 25 is in accordance with the Casimir effect derived
in 4 dimensional Minkowski spacetime [10]. Note, the
inclusion of the two polarizations of light results in a
factor of two, as computed by the paper cited in the line
above. The force is visualized in the following plot:
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FIG. 10. Plot of the Casimir force with and without inter-
ference as a function of the initial separation of the mirrors
forming the cavity. The vertical axis is using a logarithmic
scale to emphasize the divergent feature at no separation. We
note that the anomalous change in curvature at L ∼ 0.3 is an
artefact generated by the symlog function in Python used to
logarithmically scale negative-values in the vertical axis, and
has no physical meaning. We see that it is only significant at
small separations of the mirrors.

Note: We have only considered stationary mirrors. In
the next section, we look at the dynamical Casimir effect
for moving boundaries.

We can also consider the case in which the mirrors
are not necessarily perfectly reflecting in the case where
interference is included. To visualize this in 3 dimensions,
we consider both mirrors to have the same reflectivity
RR = RL = R, which results in the following expression
for the attractive force:

F (L,R) = −3Li4(R
2)

16π2L4
, (26)

where Lin(z) is the polylogarithm function for a complex
argument z with power n. We plot the Casimir force for
reflectivities ranging from completely transparent R =
1, to completely absorbent R = 0, and to completely
reflecting R = −1. This is visualized in the following
plot:

FIG. 11. Plot of the Casimir force between two mirrors as a
function of the initial separation, and different reflectivities of
the mirrors. The cusp shape near the completely absorbent
point comes from the square root dependence of the reflectiv-
ity in the argument of the integrated exponential.

Finally, the presence of a medium gain with transmit-
tance T would simply change the contributions of the
external legs for the final expression of the force:

e−kL → e−kL+Tβ , β ∈ C. (27)

The result of the force agrees with an alternative ap-
proach that utilizes the Gelfand-Yaglom theorem for
functional determinants [11]. Refer to the appendix for
a brief overview of the approach.

D. More On Interference

In the previous section we saw the contribution of re-
flection and the interference of photons on the force be-
tween two neutral, parallel, metal plates interacting with
a massless scalar field. This leads to a series of reflec-
tions which produced a log(1-integrand) term in the new
integrand. It should be noted that a caveat for this ap-
proach is that the calculations are done in real time with
the partition functional Z. This means that the expo-
nential terms instead of being phases of complex vectors
that can interference with each other in imaginary time,
we have the multiplications of numbers which in itself is
not interference. The diagram calculations, however, are
done in imaginary time with the use of a Wick rotation.
Usually interference of photons in considered within

the case of Young’s experiments or beam splitters, typ-
ically described via path integrals or Fock states within
a defined Hilbert space with quantum fields [12]. Dur-
ing an extensive literature review, an interesting claim
was found describing the interpretation of the Lorentz
radiation pressure force on submerged mirrors [13]. In it
they consider mirrors with Fresnel reflection coefficients
with phase angles ϕ0 submerged in a dielectric (in our
case the vacuum can be thought of a dielectric via vac-
uum polarization) with refraction index n. Within the
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region of the liquid that is within the cavity formed by
the two mirrors, the incident beam interferes with the
reflected beam as expected. The claim is that the result-
ing Lorentz force that the interference fringes exert on
the liquid pulls away from the mirror given a phase angle
ϕ0 = π, and pushes towards the mirror for ϕ0 = 2πm,
where m ∈ Z. They conclude the contribution of inter-
ference to be negligible and that the total force acting
both on the mirror and the liquid is the same regardless
of the value of the phase angle ϕ0.

E. Photon Scattering

When photons bounce off the mirror they will interact
with one another via the perturbative interaction term
given in Yukawa theory as covered in the first section
when working within our approximation that we model
photons with massless scalar fields. For the following
consideration we work in the framework of QED with
gauge fields Aµ for photons. At first loop order, photons
interact via the following diagram:

FIG. 12. Photons interacting with each other at first loop
order via a virtual fermion loop.

For example, the probability of two photons coming
in both with positive polarization and exiting with both
negative polarization is computed for the diagram above
and is given by [14]:

|iM++−−|2 =

∣∣∣∣−11α2s2

45m4

∣∣∣∣2 , (28)

where α is the fine structure constant, s = (k1+k2) = 4e2

is the usual Mandelstam variable, and m is the renormal-
ized electron mass. We see that the probability is fairly
suppressed and will not affect the photon pressure force
on the mirrors by a significant amount. Moreover, there
are 3-loop order contributions to the interaction, but it
does not raise the probability significantly:

FIG. 13. Photons interacting at third loop order via multiple
virtual fermion and virtual fermion/photon loops [15] .

III. DYNAMIC BOUNDARY CONDITIONS

In this section we consider the right boundary con-
dition (mirror) to be in motion, either perturbatively or
relativistically along a worldline x = z(t) in 1+1 D space-
time dimensions, where t is an affine parameter. Once
more we look at how the radiation within the cavity ex-
erts a pressure on the mirrors and the effects of the in-
terference of light. Due to the motion of the mirror, we
also run into the creation of particles and radiation due
to the dynamical Casimir effect (DCE).

A. Radiation Pressure From Quantized Fields

In this section, we look at analysis done for computing
the radiation pressure of massless scalar fields on moving
mirrors with Dirichlet or Robin BCs [16]. Once again we
consider a field φ(t, x) obeying the massless Klein Gor-
don (KG) equation for a BC moving relativistically with
coordinates z(t) ≡ x. In the rest frame of the lab, one can
write the vanishing Dirichlet/Robin BCs after applying
the appropriate representations of the Poincaré group as:

φ(t, z(t)) = 0, [ż∂t + ∂x]φ(t, x)|x=z(t) = 0. (29)

One can use the conformal (transformation) invariance of
the KG to obtain the lab frame solution with the trans-
formations: t − x = f(ω − s) & t + x = g(ω + s). This
gives rise to the BCs taking a simpler form:

φ(ω, o) = 0, ∂sφ(ω, s)|s=0 = 0. (30)

We have the usual expansion of the scalar field φ in terms
of quantized annihilation and creation operators, a and
a†, respectively, and the associated eigenfunctions:

φω(t, x) =
1√
4πω

(
γe−iωπr(v) + γ∗e−iωπp(u)

)
. (31)

Here u = t−x, v = t+x, γ = 1, i for Robin and Dirichlet
BCs, respectively. If we consider a light cone within the
ambient spacetime centered at the origin, the positive
and negative positions are denoted by regions i and iv,
respectively, and for the positive temporal regions, and
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those to the left of it within the light cone (the retarded
trajectory of the mirror)as ii and iii, respectively. This is
visualized in the following figure:

FIG. 14. Light cone centered at origin, with various regions
marked. The gray trajectory represents the motion of the
mirror before passing to positive values of displacement.

For regions i & ii it follows that r(v) = v, p(u), and
2τ(u)− u = f−1(u), where τ(u) is implicitly solved from
τ(u) − z [τ(u)] = u = p(u). For regions iii and iv, it
follows that p(u) = u, and 2τ(v)− v = g−1(u) = r(v).
The force on the moving boundary can then be found

by averaging over the first component of the stress tensor
T̄ = ⟨Too(t, x)⟩ and adding up the contributions from
regions iii & iv, and i & ii respectively, denoted (-) and
(+):

F (t, x) = T̄ (t, x)(−) + T̄ (t, x)(+). (32)

Of the total force experienced by the mirror, the con-
tribution from the radiation pressure can be expressed
as:

F = 2

∫
dωdω′⟨a†ω′aω⟩Λ(ω, ω′, γ∗, γ), (33)

where Λ has the functional form:

Λ(ω, ω′, ρ, λ) =

√
ωω′

4π

[
−ρ2

(
1 + ż

1− ż

)2

e−i(ω−ω′)p[t−z(t)]

+ ρ2e−i(ω−ω′)[t−z(t)]

− [(z, ż, p, ρ) → (−z,−ż, r, λ)]
]
.

(34)

Here the last term in the expression above with the ar-
row indicates repeating the same component as before ex-
cept with the parameters within the argument swapped.

Finally, to get an explicit expression for the integral
above, consider a thermal bath of a finite temperature T
that is invariant under time-translations, meaning that

⟨a†ω′ , aω⟩ = 1/(eω/T − 1)δ(ω′ − ω). This results in the
radiation pressure force on the moving mirror as the fol-
lowing:

F (ż) = −σT

[
ż

(
1 + ż

1− ż

)2
]
. (35)

Here σT = 2|γ|2πT 2/3 is the viscosity coefficient. The
expression above will be compared to the force difference
from the effects of interference.

B. Dynamical Casimir Effect

With accelerating, relativistic, moving boundary con-
ditions, we have the production of particles and energy
densities in the form of radiation [17], known as the dy-
namical Casimir effect (DCE). Within the context of
QFT in curved spacetime, analogous analyses are used
to describe Hawking radiation and the Unruh effect.

1. Optomechanical Cavity Approach

One way to describe the dynamical Casimir effect is
having a resonant cavity made of mirrors with one bound-
ary connected to a spring. The oscillatory motion of
the mirror squeezes the cavity non-adiabatically thus in-
ducing fluctuations of the fields and the production of
particles from the vacuum. The effect is modelled as a
scattering process that converts phonons (a collective ex-
citation in a periodic and elastic arrangement of atoms,
in this case the mirror attached to the spring) to photons
[18].
The motion of the mirror is perturbative, non-

relativistic, and has the following Hamiltonian:

H = ωca
†a+ ωmb

†b+ V. (36)

Here ωc is the frequency of the cavity field operator a†,
ωm is the frequency of the SHO spring motion, and b† is
the SHO field operator. The radiation pressure on the
mirror has an operator that can be expressed as:

F =
ωc

2L

(
a+ a†

)2
. (37)

With this, we write the interaction term as F = V x,
where x is written as usual in terms of the b† operators
to give the interaction term:

V = Fx = ga†a
(
b+ b†

)
+
g

2

(
a2 + a†

2
) (
b+ b†

)
. (38)
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This gives rise to two types of interaction vertices:
optomechanical vertices for the SHO and dynamical
Casimir vertices for the cavity, with associated Feynman
rules. This can be used to compute dressing effects such
as corrections to the oscillator and cavity frequencies us-
ing associated one particle irreducible (1PI) diagrams,
the renormalization of the field strength, and the correc-
tion to the ground state energy.

For the purposes of the radiation pressure from the dy-
namical Casimir effect, diagrams in which phonons are
converted into two photons (artefact at tree level) are
considered, due to the fact that the DCE is essentially
energy transferring from the mirror to the field. When
photons are generated from the vacuum, they take en-
ergy from the mirror and exert radiation pressure on the
boundary, known as the backaction effect. To compute
the force, you take the interacting vacuum expectation
value of the force operator introduced before, using the
usual form of the expectation value:

⟨Ω|T [A(t1)B(t2)]|Ω⟩ = ⟨0|UI(∞,−∞)|0⟩−1×
⟨0|T [UI(∞, t1)AI(t1)UI(t1, t2)BI(t2)UI(t2,−∞)]|0⟩.

(39)

Here, T is the time-ordering operator, A(t), B(t) are time
dependent operators, and UI(t) is the unitary evolution
operator in the interacting picture. Taking A and B to
be the backaction force at different times, the correla-
tion function for the force observable at different times is
computed:

⟨Ω|T [F (t1)F (t2)] Ω⟩ =
ω2
c

AL2
e−2iωc(t1−t2). (40)

It is seen that the backaction force at different times has
non-vanishing correlations at O(L−3), which is a very
small number macroscopically when compared to the ra-
diation pressure in Eq. 35.

2. Iterative Diagram Approach

Now we are interested in the case of a non-
perturbative, relativistic motion of the boundary condi-
tion. We take an iterative approach, similar to how the
Casimir force with interference was derived in the static
BCs section. First, consider the fact that a highly reflec-
tive material has a very small penetration depth, so light
spends very little time within the mirror before it reflects
off. This means that the mirror only accelerates over a
small time interval for each reflection and thus we can
approximate that its motion is uniform during so. This
means that the mirrors velocity is modelled by discon-
tinuous, instantaneous increases after every reflection off
the moving mirror, like an increasing step function. For
clarity, whenever we mention a moving mirror, it refers
to the one on the right of the cavity, meaning the one

on the left is fixed and always stationary. Moreover, it is
worth noting that relativistic effects such as time dilation
and length contraction do not appear here as we are only
interested in the time elapsed in the lab frame where the
mirror is in motion, and length contraction would only
apply to the thickness of the mirror which does not affect
calculations. Thus the only relativistic effects present is
the redshifting of light after each reflection.
We take the origin to be centered at the moving mir-

ror’s initial position, and take the first time step t1 to
be the time when light first comes in contact with the
moving mirror. This imparts momentum on the mirror,
and the next time step is when light hits the left station-
ary mirror. The next time step occurs when light hits
the moving mirror again. This is then repeated for N/3
reflections. This is visualized in the following figure:

FIG. 15. Setup of photon recycling. Light transmits through
the left mirror and reaches the right mirror at t1, where the
moving mirror has been displaced by δx1 = 0. Light then
reflects off the mirror, imparting momentum onto the right
mirror with velocity v2 and redshifting accordingly. Light
reaches the left mirror at t = t1 + t2 and the process of re-
flecting and redshifting continues until the light has negligible
energy.

Although we have labelled them differently to find the
recursion relation, the velocity of the mirror only changes
after every two time steps so we say v2i = v2i+1 where i
refers to the ith reflection, and i = 1 is when light firsts
hits the right mirror, and i = 2 is when it first hits the
left mirror. Moreover, after a reflection off the right mir-
ror, although the mirror gains momentum, the distance
between the light and the left mirror has not changed,
so we say t2i−1 = t2i. Using these two conditions, we
can recursively find the displacement of the mirror for
the ith reflection, as well as the time spent during the
displacement:

δxi = vi L

⌊ i−1
2 ⌋∏

j=1

(
1 + v2j
1− v2j

)
, δti =

(
δx

v

)
i

. (41)

We thus have the size of the cavity at the N -th reflec-
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tion given by LN = L +
∑N

i=1 δxi which will be useful
when considering the force on the mirror. Now, the ini-
tial conditions we have is that the mirror is initially at
rest v1 = 0 and the momenta of the photon first coming
in is fixed to k1, but what are the subsequent velocities
of the mirror and red-shifted momenta of the photon?
To do this, consider radiation hitting a moving mirror,
expressed by the i) partition of the following diagram:

FIG. 16. Light reflecting off a mirror. i) Light reflecting off
the right moving mirror and redshifting after reflecting. ii)
Light reflecting off the fixed, stationary left mirror and not
redshifting after reflection.

We can write the four momenta before and after the
reflection event, given by the following:

pµγ,1 = (k1, k1), pµM,1 = (E1, γ1Mv1)

pµγ,2 = (k2,−k2), pµM,2 = (E2, γ1Mv2).
(42)

Here γj = [1 − v2j ]
− 1

2 is the usual Lorentz factor. From
this we can write down momentum and energy conserva-
tion, respectively:

γ1Mv1 + k1 = −k2 + γ2Mv2

k1 +M
√

1 + γ21v
2
1 = k2 +M

√
1 + γ22v

2
2 .

(43)

Finally, we consider adding the two equations and sub-
tracting the first equation from the second, respectively.
Moreover, we replace the 1, 2 subscripts with i, i′ = i+1
for the sake of setting up a recursion relation. These two
equations are given by:

2ki +M(γivi +
√

1 + γ2i v
2
i ) =M(γi′vi′ +

√
1 + γ2i′v

2
i′)

M(
√
1 + γ2i v

2
i − γivi) = 2ki′ +M(

√
1 + γ2i′v

2
i′ − γi′vi′).

(44)
From the first equation we can in principle isolate for
the velocity of the mirror after reflection to be a func-
tion of the initial light momentum ki, the initial velocity
of the mirror vi, and the mass of the mirror M , to get
vi+1 = f(vi, ki;M). Solving this analytically, however,

fairs very poorly for computation time and convergence
(as attempted in a Mathematica notebook) for N reflec-
tions. Instead, when computing for the velocity of the
mirror after the ith reflection, we begin with the initial
condition v1 = 0, plug that in to get an equation with
numbers and numerically repeat the iterations for N re-
flections.
Moreover, for the second equation we could also in

principle solve for the new momentum of the red-shifted
light as a function of the mirror velocities before and af-
ter the event, photon momentum, and mirror mass to get
ki+1 = g̃(vi, vi+1;M) = g(vi, ki;M), where g = g̃◦f , and
f is the velocity function as described before. However,
again we run into convergence time issues and proceed
with a numerical propagation of computations, given a
fixed initial k1 ̸= 0 momentum for the photon.
We can also consider the case in which light reflects off

the left fixed mirror, as seen in Fig. 16 ii), whose four
momenta are given by:

pµγ,2 = (k2,−k2), pµM = (M, 0)

pµγ,3 = (k3, k3), pµM = (M, 0).
(45)

Note we do not include subscripts on the different 4
momenta of the fixed mirror as it does not gain energy.
We see from this that light does not get red-shifted as it
reflects off the mirror and thus has the same momenta.
This will be useful when considering loop diagrams for
moving mirrors.
Now that we have the expression for the cavity size,

the velocities of the mirror and the red-shifted momenta
of the light within the cavity, we move on to generalize
our results in the static boundary condition section by
considering diagrams with a moving mirror. Consider
first the case where light reflects off both mirrors once,
visualized in the following figure:

FIG. 17. Light reflecting off of both mirrors once, with corre-
sponding redshifts.

Recall by the previous calculation that light does not
redshift off of the stationary mirror and thus k3 = k2.
This allows us to simply draw a loop diagram labelled
with k1 for the initial momenta and k2 for the reflected
momenta. At first, if we follow what we initially had
for interaction vertices on the right and left side of the
mirror, the right side given analogously by Eq. 11, then
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the amplitude of this diagram for N ′ interaction vertices
on both mirrors would be:

iM1 = Ξ

∫ N ′∏
j=1

[
d2k′j
(2π)2

e
i

2N′ k1L

(k′j+1 − k′j − iε)(k′2j − iε)

]2

.

(46)

Here Ξ = (µ2
Lµ

2
R)

N ′
/2!. Instead of computing this how-

ever, we can use the results we derived for the case of a
single loop, analogous to what we had in Eq. 20 and 21.
The amplitude for this loop diagram is instead given by:

iM1 =
1

2!

∫
dk1
2π

dk2
2π

d3k

(2π)3
µLµRe

ik1L

(k21 + k2)(k22 + k2)

∼ 1

2!

∫
d3k

(2π)3
µL

2k2

µR

2k1
e−2L

√
k2

=
1

2!

∫
d3k

(2π)3
RLRRe

−2L|k|.

(47)

Now what about the next iteration or reflection? We
can write the total contribution to the 1-loop diagram as
the sum of loop diagrams at different iterations, labelled
similarly to what we had above. This is seen by:

FIG. 18. Contribution of light reflecting off of both mirrors
expressed as a sum of 1 loop diagrams for each iteration. It
is noted that although the mirrors are drawn to have the
same separation, after each iteration the distance increases as
Lj = L+

∑j
i δxi.

Adding up all the N contributing diagrams, we are left
with the total amplitude integral:

iM =
1

2!

∫
d3k

(2π)3
RLRR

[
e−2L|k| + e−2L′|k| + . . .

]
.

(48)
We see that in the case of the right mirror moving, we
get a sum of exponentials where the arguments of the
exponentials have different distances of separation be-
tween the mirrors. The second term in the series has
L′ = L + δx1 + δx2. Due to the linearity of integration,
we can solve the integrals separately and to recover the
force we multiply by a negative sign and differentiate the
result with respect to the different cavity separations to
get the following:

F (L) =
−3RLRR

16π2

[
1

L4
+

1

L′4
+ . . .

]
. (49)

This gives us an expression for the force for N reflec-
tions without the effects of interference. Once more, to
incorporate the effects of the interference of light, we con-
sider a scattering series of diagrams. For each iteration,
i.e., each separation of the cavity after a reflection event,
we look at many reflections of many photons off of the
two mirrors and sum up the contributions. This is sim-
ilar to what weve done above and is visualized by the
diagram sum:

FIG. 19. Contribution of many photons reflecting off of both
mirrors for each iteration. Although visually the diagrams
only depict four reflections, the diagrams are meant to visu-
alize summing over 1 to N reflections, per iteration, as was
done in the static mirror section (which can be thought as the
very first iteration only).

As with before, in each iteration, the scattering series
changes the integrand to have a logarithmic dependence
and results in the expression for the force as:

F (L) =
−3Li4(RLRR)

16π2

[
1

L4
+

1

L′4
+ . . .

]
. (50)

Now, we would like for the expression to contain veloci-
ties only to only have one free parameter, and to better
compare with literature results. We first express the dif-
ferent lengths in the denominators as the relative shifts
in mirror separations, given by the following:

F (L) ∼ L−4 +

[
L+

2∑
i=1

δxi

]−4

+

[
L+

4∑
i=1

δxi

]−4

+ . . .

(51)
Finally, using the results from the beginning of this sec-
tion, we replace the displacements with the displacement
function in terms of velocities and compactly express the
form of the force on the mirrors for N reflections, with
the effects of interference included:

F (v) =
−3Li4(RLRR)

16π2

N/2∑
k=0

L
1 +

2k∑
i=1

vi

⌊ i−1
2 ⌋∏

j=1

(
1 + v2j
1− v2j

)−4

.

(52)
Now, as expected from the static BCs section, we see the
force contributions from interference is suppressed by the
L−4 factors and when comparing to Eq. 35, the differ-
ences in magnitude demonstrates that the interference
of light does not pose a problem for photon recycling
in a passive cavity. Moreover we give some comments
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about the estimated efficiency and acceleration of pho-
ton recycling. To calculate the efficiency, we compute
the efficiencies ηi = vi+1/vi and average over all the N
iterations. This involves recursively plugging in numbers
in Mathematica to get the different values of the veloc-
ities. It is found that averaging over the efficiencies for
N = 1000 reflections, we get η ∼ 0.513. Moreover, we
compute the force numerically for N = 1000 reflections
and divide by the mass of the mirror (taken to be M = 1
mg or 5.62 GeV in natural units) to get an estimation of
the effect of interference on the acceleration of the mirror,
noted at δa. It is found that δa ∼ 3.36× 10−22 GeV−2.

C. More On Interference

Although in the previous section we saw how interfer-
ence directly affects the force on the mirror in the context
of the DCE, it is interesting to see more explicit descrip-
tions of interference and its relation to a macroscopic
force.

1. Dynamical Casimir Effect

One approach is to consider a cavity formed by two os-
cillating Dirichlet mirrors in which the discrete spectrum
of created particles in DCE Nk for the k-th mode in an
oscillating cavity is [19]:

Nk = NL
k +NR

k + (−1)s+12
√
NL

k N
R
k cosβ, (53)

where NL
k , N

R
k are the spectrum generated by the left

and right mirror, respectively, s is the ratio between the
oscillation frequency of the mirror and the fundamental
mode frequency φ in the cavity, and β is the phase differ-
ence. This looks very similar to the wave intensity I in
the case of the double slit interference experiment, given
by:

I = I1 + I2 + 2
√
I1I2 cos δ. (54)

Here Ii is the intensity of the wave at the ith slit, and
δ is the phase difference between the amplitudes. Al-
ternatively, for the case of a moving BC, the positive
and negative frequency solutions in the expansion of the
scalar field can be put in a vector Φ(t, x). Moreover,
the field can be split in terms of eigenfunction fields on
the right and left side of the mirror, denoted by outgo-
ing and incoming fields, respectively. Here in the scat-
tering events of the field with the mirror, causality re-
quires the incoming fields be free and outgoing ones are
modified by the interaction with the mirror described as
Φout(ω) = S(ω)Φin(ω) [20], for a given frequency ω. It
can be shown that applying the scattering procedure to
the DCE for small oscillatory, non-relativistic motion, we
have corrections for the expression of the outgoing fields:

Φout(ω) =S(ω)Φin(ω) +

∫
dΩ

2π
Φin(Ω)[δSΩ(ω,Ω)

+ qδSq(ω,Ω)].

(55)

Here δSi are the corrections to the scattering matrix that
are integrated over, and q is the DOF of the mirror. Now,
the spectral distribution of created particles can be found
by integrating over the trace of the scattering matrix cor-
rections given by:

N(ω) =

∫
dω′

2π

ω

ω′Tr[δS(ω,−ω
′)δS†(ω,−ω′)], (56)

where δS(ω,−ω′) = δSΩ(ω,−ω′) + δSq(ω,−ω′). Here,
there are three different contributions to the distribution
given by N(ω) = Nγ(ω)+Nq(ω)+Nint(ω). Nγ(ω) repre-
sents the spectrum of particles created by a fixed mirror
with time dependent properties, Nq(ω) is the spectrum of
particles created by a moving mirror, and Nint(ω) is the
spectrum of particles involved in interference. The com-
ponent contribution from the interference of the fields is
given by:

Nint(ω) =− 8ωε2γ̃0q̃0

∫
dΩ

2π

1− γ20ωΩ

1 + γ20Ω
2

× 2Re{G(ω +Ω)F ∗(ω +Ω)}.
(57)

The prefactor in front of the integral are real constants,
while functions F,G are Fourier transforms of source
term functions. After computing the integration and nor-
malizing by an affine parameter gives, it can be rewrit-
ten in terms of the other contributing term, which takes
a very similar form of the interference pattern from the
double slit experiment:

Nint(ω) = −sgn [I(ω)] 2
√
Nq(ω)Nγ(ω) cosϕ, (58)

where I(ω) is the intensity amplitude for a given fre-
quency. We see that up to a sign given by the intensity,
the spectral distribution of created particles in the DCE
is analogous to the intensity distribution of light in the
double slit experiment. This shows that the interference
of created particles via scalar fields can analogously be
interpreted in the same vain as the interference of light.

2. Electrodynamics

In the case of electrodynamics, the equations of motion
from a Yang-Mills theory reduces to :

dF = 0, ⋆d⋆F = J. (59)

Here F is the vector bundle-valued curvature two form
F = 1

2Fµνdx
µ ∧ dxν . Working in local coordinates xµ of
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a chart ϕ, and in the case where we have non-vanishing
surface current and charge, we can express them as:

Dµν =

√
−g
µ0

Fµν −Mµν

Jµ = ∂νD
µν , fµ = FµνJ

ν .

(60)

Here Dµν is an anti-symmetric rank 2 tensor density
which includes both the electric displacement field D and
the auxiliary magnetic field H. Moreover, Mµν is the
magnetization-polarization tensor, and fµ is the Lorentz
force tensor. Using the above and the appropriate BCs,
it can be shown that the Lorentz force of two electromag-
netic waves at a separating angle θ entering a dielectric
medium along the ẑ-direction with p-polarization is given
by [21]:

F =− 1

2
Re{JxB∗

y}

= 2πn sin θ/λ0
(
n2 − 1

)
ε0E

2
0 sin (4πnx sin θ/λ0)

= ε0e
2
0

(
n2 − 1

)
.

(61)

Here n is the index of refraction of the medium. Without
the interference of light and thus the phases of the elec-
tromagnetic waves, this quantity would vanish. Taking
n ∼ 1.6 for mirror substrates [22], we get F ∼ 1.56ε0e

2
0.

Being that the electric permittivity in a vacuum ε0 is
a microscopic quantity and is very small, the force from
the interference of light on a mirror in heavily suppressed
when compared to the radiation pressure.

IV. BRIEF COMMENTS

Within [4], in addition to claiming that the interfer-
ence of light will completely cancel out the contribution
of radiation pressure on the propulsion of the HR pay-
load, they also claim that the kinetic energy delivered to
the spacecraft in a passive cavity without an active gain
medium, is less than that by the single reflection of laser
sail with the incident laser beam, which we will call the
reference energy. In the paper, the kinetic energy gained
by the payload is found by integrating over the thrust L:

Ep =
2Pinc

c

T

(1−R)
2

∫ L

L0

dL

1 + Fc sin
2(k′L)

. (62)

Here Pinc is the incident laser power, T is the transmit-
tance of the cavity, R is the reflectivity of the cavity,
k′ = k + δr/2 is the modified wavenumber of the laser
beam with δr/2 being the phase difference for one reflec-
tion, and Fc is the coefficient of finesses of the cavity. In
it, they approximate the above integral to be:

Ep ≈ 2Pinc

πc
(L− L0) (63)

This is then compared to the reference Eref =
2
c (L−L0),

and it is concluded that the energy gained in a passive
cavity is strictly less than the reference energy and thus
is impractical. Computing the integration is done with a
few trigonometric substitutions and results in:

Ep =

[
TPinc

2cR

](
cot(L0k

′)− cot(Lk′)

k′

)
. (64)

The reference energy can be manipulated to be written
with the same prefactor above to give:

Eref =

[
TPinc

2cR

](
4
√
R

π(1−R)

)
(L− L0) . (65)

Due to the factor of 1/k′ in Ep, there will be periodic
divergences in ±∞, so it is not well-defined when the
reference energy is higher than the kinetic energy gained
in a passive cavity.
Moreover, for an active cavity, once again they ap-

proximate the integral for the energy gained in an active
cavity with an active gain medium:

Ea =
2ε2

Ppc

∫ L

L0

dL

|1− exp( 12 (δm −∆)− 2ik′L)|2

≈ 2ε2

Pp∆c
(L− L0).

(66)

Here Pp is the power of the pump laser feeding energy into
the active gain medium, η is the pumping efficiency in the
amplitude of the gain medium, δm is round-trip power
gain factor, and ∆ is the total round-trip loss factor.
After computing the modulus in the denominator, the
integral is computed numerically and gives:

Ea =
ε2 [arctanh(Γ tan(Lk′))− arctanh(Γ tan(L0k

′))]

k′Γ
.

(67)

Here Γ =
√
−(1 + 4 exp(1/2(δm −∆))). Once again, due

to the 1/k′ factor, the result is periodically divergent, and
it is not clear when it is greater than the reference energy.
Thus, the claims made against the passive cavity based
on comparing it to the reference energy are invalid.

V. CONCLUSION

In this paper we developed a Feynman diagram ap-
proach to characterize the effects of light interference on
the radiation pressure exerted on a moving mirror. We
studied the different quantum effects including interfer-
ence in the separate cases that the mirrors don’t move,
and one moves relativistically. We also looked at the
effects of the interaction or scattering of light via loop
diagrams, and the dynamical Casimir effect. It is found
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for the case of scattering, the amplitude is suppressed by
factors of the electron mass in the virtual electron loop.
Moreover, for the case of interference, the change in ra-
diation pressure is suppressed by factors of L−4, where
L is the initial separation of the mirrors in the cavity. It
is thus concluded that the effects of interference are neg-
ligible for propulsion via photons bouncing in a cavity.
Moreover, for N = 1000 reflections, it is also found that
the efficiency of photon recycling is η ∼ 0.513, and the
effect of interference on the acceleration of the mirror is
given by δa ∼ 3.36 × 10−22 GeV−2 which is again small
compared to the macroscopic acceleration given in cited
literature.
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VII. APPENDIX

A. Casimir Force: Functional Determinant
Approach

In this section we briefly cover the alternate method
used to derive the Lifshiftz formula for the Casimir force
using the Gelfand-Yaglom theorem [11].

We consider a fluctuating real scalar field in D+1
spacetime dimensions where the field is coupled by two
imperfect, thick mirrors modelled as potentials Vi on
their positions. The Euclidean action S[φ] = S0[φ] +
SI [φ], has the usual free action for scalar fields S0[φ]
and an interaction action. The mirrors are parallel to
each other along the xD, while all other directions are
denoted as x̄ = x1, . . . , xD−1. We bound the system to
reside within a D-dimensional box subject to the same
Dirichlet BC on all 2d boundaries, with side lengths l̄
for x̄ and l for xD. The setup of the physical system is
depicted as follows:

FIG. 20. Physical setup of system with two wide and differ-
ent potentials modelling the positions and thicknesses of the
mirrors.

The interaction between the mirror potentials and the

scalar field is given by the action:

SI [φ] =
1

2

∫
dD+1xdD+1x′δ(xD − x′D)V (xD, x̄− x̄′)

× φ(x)φ(x′),

(68)

where the potential argument in the action is of the form:

V (xD, x̄− x̄′) = V1(xD − a1)λ1(x̄− x̄′)

+ V2(xD − a2)λ2(x̄− x̄′).
(69)

Now, we want to compute the vacuum energy between
the mirrors without the contribution of the individual
mirror’s selfenergy. This is done with the spatial tempo-
ral limit:

ε =
1

2
lim

T,l̄→∞

(
1

T l̄d−1
log

Z

Z0

)
. (70)

Here, Z is referring to the continuous limit of the parti-
tion function in real time, expressed as the path integrals
over the different field configuration φ:

Z =

∫
Dφe−S[φ], Z0 ≡ Z|V→0. (71)

Now, we can write down the exact solution for the par-
tition function by expressing it in terms of a functional
determinant:

Z =
√

det[−∂2 +m2 + V ] ≡
√
detχ. (72)

Here, χ acts on variables x ∈ RD+1 which vanish on the
boundary on the boundary of the imposed box. We can
use separation of variables (SOV) to reduce the problem
to deal with operators acting on a univariate variable xD
and momentum k = (k0, . . . , kD−1) as follows:

detχ =
∏
k

det χ̃(k), (73)

where χ̃(k) has the form:

χ̃(k) = −∂2 +Ω2(k) + Ṽ (xD, k), Ω(k) =
√
k2 +m2.

(74)
Putting this in our expression for the vacuum energy

and taking the continuous limit to get integration in D
dimensions gives the following form:

ε =
1

2

∫
dDk

(2π)D
log

[
det χ̃(k)

det χ̃0(k)

]
. (75)
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Now, we make use of the Gelfand-Yaglom theo-
rem which relates functional determinants of the one-
dimensional second order differential operators to the so-
lutions of the corresponding initial value problem [23].
After shifting and re-scaling coordinates, we express the
ratio of the determinants as the ratio of solutions to the
associated homogeneous equations:

det χ̃(k)

det χ̃0(k)
=

ψ( l
2 )

ψ0(
l
2 )
, (76)

where ψ(x) solve the associated homogeneous equations:

χ̃(k)ψ(xD) = 0, χ̃(k)ψ0(xD) = 0. (77)

Once again, putting this in our expression for the vacuum
energy and differentiating with respect to the length of
the box gives:

F (L) =
1

2

∫
dDk

(2π)D
∂

∂L
log

[
ψ( l

2 )

ψ0(
l
2 )

]
. (78)

In order to compute ψ(l/2), we rewrite the relations of
solutions to the initial value problems with matrices as:

Ψ(xf ) = A(xf , xi)Ψ(xi), (79)

where Ψ(x) and A(x) have the following forms, respec-
tively:

Ψ(x) =

[
ψ(x)

ψ′(x)/Ω

]
, A(xf , xi) = U(xf )U

−1(xi). (80)

Here U(x) is the Wronskian matrix made up of indepen-
dent solutions of the homogeneous equation. A is known
as the transfer matrix that allows us to evaluate ψ,ψ′ on
the right side of each mirror in terms of their values on
the left side of the mirrors. The intervals between the
mirrors can be split up into portions where the potential
vanishes and it can be shown that the transition matrix
has the form:

A(l/2,−l/2) =A(0)(l/2, b2)A
(V2)(b2, a2)A

(0)(a2, b1)

×A(V1)(b1, a1)A
(0)(a1,−l/2).

(81)

A(0) can be found using the U00 and U01 components of
the Wronskian matrix that houses the individual solu-
tions. It can then be shown that using the expression for
A above that the solutions ψ(x) take the form:

ψ(l/2) = uT2A
(2)A(0)A(1)v1, (82)

where

ui =

[
coshΩli
sinhΩli

]
, vi =

[
sinhΩli
coshΩli

]
. (83)

Finally, the derivative of the logarithm of the solutions
ψ is shown to be (in the limit l → ∞):

[
∂ logψ(l/2)

∂l

]
l→∞

=
ΩU01(x)ω

T
1 A

(2)CA(1)ω1

ωT
1 A

(2)A(0)A(1)ω1
. (84)

Where ω1 = 1/
√
2 (1, 1)T and C = σx − 12×2. We can

finally rotate to the ωi where ω2 = 1/
√
2 (1,−1)T which

in turn affects A(0,1,2) → T (0,1,2) & C → D. Next, we
take the l/L → ∞ limit and expand up to L/l to first
order to get the expression:

[
∂ logψ(L/2)

∂l

]
l
L→∞

=
∂

∂l
log

[
1 +

T
(2)
12 T

(1)
21

T
(2)
11 T

(1)
11

U2
01

]
.

(85)
Finally, to get the force per unit volume in terms of
the reflection coefficients of the mirrors, we associate
U00 = eΩx & U01 = e−Ωx and the quantities r(1) =
T

(1)
21

T
(1)
11

& r(2) = −T
(2)
12

T
(2)
11

as the reflection coefficients of the

left and right mirror, respectively. This gives the final
form:

F (L) = −1

2

∫
dDk

(2π)D
∂

∂L
log
[
1− r

(1)
R r

(2)
L e−2ΩL

]
. (86)

This is exactly in accordance with the expression we de-
rived using Feynman diagrams, except instead with func-
tional determinants.
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